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Abstract

Most of the oil and gas tracts in the Gulf of Mexico that were auctioned by the federal

government after 1980 were adjacent to tracts that are already under lease. Owners

of neighboring leases enjoy incumbency advantages that act as a barrier to entry for

other firms. We ask whether there is evidence that these owners took advantage of their

situation and did not compete with each other. To answer this question, we develop

two tests of competitive bidding in common value, first-price auctions where rejection

suggests collusion. One test examines the affi liation of neighbor firms’participation

decisions and their bid levels. The second test examines how the distribution of their

pivotal-expected values varies with the level of competition. We implement these tests

using data on bids and tract characteristics. The results from both tests indicate that

bidding was competitive before 1983, but not thereafter, especially on deep water tracts.
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1 Introduction

The U.S. Bureau of Ocean Energy Management (BOEM), formerly known as the Min-

eral Management Service, operates under a Congressional mandate to recover “fair market

value”from oil and gas leases on federal lands on the Outer Continental Shelf (OCS). The

BOEM uses a combination of first-price sealed bid auctions and royalties to capture this

value, and there have been few alterations in lease terms and the auction mechanism over

the years. The leasing program began in 1954 and has generated considerable revenue for

the government. Most of the offshore oil and gas is produced in the Gulf of Mexico. Figure

1 depicts the revenues the government earned from the sale of leases in the Gulf of Mexico

and royalty payments from these leases for the period 1954 to 2002. The revenues are re-

ported in two year increments and measured in 1982 dollars. Total sales revenues over the

entire period were $64 billion and total royalty payments were $91.6 billion. Sales revenues

rose dramatically in the 1970’s and early 1980’s, and the discoveries on these leases gener-

ated a substantial flow of royalty payments for many years thereafter. But sales revenues

plummeted after 1983. Prior to 1983, the government earned $47.7 billion from sales of

3,256 leases, or $15 million per lease; after 1983, it earned only $16.3 billion from sales of

15,848 leases, or $1 million per lease. In a previous paper ?, we document that, not only did

the value of bids fall after 1983, but rent capture also fell, especially in deep water areas.

While previous empirical work has supported the hypothesis of competitive bidding prior to

1983, 1 the drop in revenues raises the question of whether the same was true in later years.

However, because a number of other significant changes occurred in 1983, answering this

question requires a more detailed examination of the data. This is the goal of our paper.

We focus primarily on the sale of tracts that have adjacent tracts under lease at time of

the sale.2 We will refer to these tracts as “neighbor tracts”and their owners as “neighbor

firms”. Neighbor firms have previously invested in seismic surveys of the area and, in

some cases, drilled wells. These investments imply that neighbors are potential bidders for

adjacent tracts. They may also deter non-neighbors from entering, which in turn would

give neighbors an incentive not to compete against each other. The benefits from collusion

are clear: lower prices and possibly better information if neighbors are willing to share

information. The costs are less obvious, since bidding joint ventures (except for the Big 8)

are not illegal.3 Figure 2 illustrates how the sale of tracts with neighbors have grown in

1See, e.g., ***
2A tract is considered an adjacent of tract t if it shares a boundary point or an edge with tract t.
3All firms were allowed to bid jointly prior to 1975. After 1975, the (then) eight largest oil and gas

companies were banned from bidding jointly with each other, although they were free to partner with other
firms.
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importance over time as more of the Gulf is explored and developed. It reports the number

of tracts with neighbors as a fraction of all tracts sold in two year increments for the period

1954 to 2002. Tracts with neighbors have dominated sales since the mid-1970s, typically

accounting for between 70 and 90 percent of leases sold in any given sale.

Our approach is to develop tests of competitive bidding in first-price, common value

auctions where rejection suggests collusion. We apply those tests to bids by neighbors

to determine whether they bid competitively. The tests exploit the fact that first, the

number of neighbors is known and arguably exogenous and second, given their investments

in the neighborhood, neighbors are potential bidders for adjacent tracts. The answer to

this question is important in its own right. If neighbors enjoy incumbency advantages, then

rent capture depends critically upon the willingness of neighbors to bid competitively. It is

also important as a specification test. Identifying model primitives and evaluating changes

in technology and policies through the lens of a competitive model of bidding makes sense

only if collusion is not a factor.

Our restriction to neighborhood cartels is motivated by two considerations. Tracts can

be viewed as locations in a spatially differentiated market. In the U.S. Gulf of Mexico,

the typical tract covers nine square miles and has eight adjacent tracts. Tract values are

spatially correlated because of the way in which nature creates oil and gas deposits. As

a result, competition for unleased tracts may be limited primarily to the firms that lease

tracts in the neighborhood. It is natural to ask if these firms can take advantage of the

situation and agree not to compete against each other. Second, in previous work by two

of the authors ??, we documented that firms would frequently bid jointly on tracts in one

area but against each other in other areas, both within and across sales. Thus, cooperation

appears to be more location-based than sale or firm-based. Of course, cooperation at one

location may spill over into other locations, including ones where firms are not neighbors.

Our analysis does not preclude such spillovers but neither does it detect them.

Our first test of competitive bidding is a non-parametric test of affi liation of partici-

pation and bids by bidders. The standard model of common value auctions assumes that

bidders obtain informative signals about the value of the lease and that these signals are

affi liated. This information structure is often suffi cient for existence of an equilibrium in

which bid functions are monotone increasing. Therefore, if bidders bid competitively, their

participation decisions and bids are affi liated. Of course, failure to reject does not imply

competitive behavior since bidders could be engaged in phantom bidding, such as bids that

are proportional to the serious cartel bid. Unobserved heterogeneity also biases the outcome

towards not rejecting. However, rejecting affi liation does suggest noncompetitive behavior,

specifically models of collusion in which the neighborhood cartel submits only one bid. Our
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test is non-parametric because bidding is a tail event - i.e., most tracts in a sale do not

receive any bids, especially in the more recent portion of our sample. The test is based on

inequalities implied by affi liation, and these inequalities continue to hold conditional on the

event of at least one bid - i.e., excluding tracts with no bids. This is important because we

do not observe the set of tracts considered by the bidders, especially in sales prior to 1983.

Our second test of competitive bidding is a stochastic dominance test of the distrib-

utions of pivotal-expected values in the number of neighbors. This test requires stronger

assumptions. Specifically, it assumes that bids are best replies to the empirical distribu-

tion of the highest rival bid and that the variation in number of neighbors is exogenous. ?

(“HHS”) developed this type of test to discriminate between private values and common

values models under the maintained hypothesis that bidders are bidding competitively.4 We

use a variation of their approach to discriminate between competitive and collusive behavior

when the information structure is common values. Under this hypothesis, the distribution

of pivotal-expected values of neighbors should be stochastically increasing in the number

of neighbors if they are bidding competitively, and rejection suggests models of collusion in

which the neighborhood cartel submits only one serious bid.

We apply the tests separately to shallow water tracts sold before and after 1983, and to

deep water tracts which became available after the introduction of area-wide leasing (AWL)

in 1983. The tests provide strong support for competitive bidding on shallow water tracts

sold before 1983. We fail to reject affi liation of neighbor participation and bids and find that

the distribution of pivotal-expected values of neighbors is stochastically increasing in the

number of neighbors. These results are consistent with the evidence and results presented in

prior work discussed below. The test results for deep water tracts tell a different story. We

reject affi liation of neighbor participation and bids and find that the distributions of pivotal-

expected values of neighbors are not stochastically increasing in the number of neighbors.

Since the information structure on shallow and deep water tracts are similar, these results

provide strong evidence that neighbors are not competing on deep water tracts. The results

for shallow water tracts with neighbors sold after 1983 are more mixed.

We also examine isolated tracts, those without neighbor tracts under lease, in the same

periods. Here we focus on the bidding behavior of the seven most active firms. The tests

tell a similar story, with bidding behavior consistent with competition according to both

tests before 1983, but not after 1983.

Our paper makes several contributions. The tests provide a way of detecting collusive

behavior in common value environments. The previous literature on collusion in auctions

has focused on private value environments, where the participation decisions of bidders

4See also ?.

4



are independent of the number of bidders. On the methodological front, we develop a

new method for homogenizing the auctions. The standard approach is to regress bids on

a rich set of neighbor covariates and use the residuals to non-parametrically estimate the

empirical distribution of the highest rival bid. We could not use this approach because we

do not observe non-neighbor bidders who chose not to bid. Instead, we use machine-learning

techniques to construct a one-dimensional index of neighborhood covariates for predicting

the distribution of the high rival bid, conditional on a bid by a neighbor firm. We use

this index to estimate the distribution of pivotal-expected values non-parametrically. On

the policy front, our results inform lease and auction design, which is currently a topic of

discussion at various government agencies such as the Congressional Budget Offi ce and U.S.

Government Accountability Offi ce.

Earlier work by Hendricks, Porter et al focused on the pre-1980 period. Hendricks and

Porter ? studied competition in auctions of drainage tracts. These are neighbor tracts

where oil and gas have been discovered on adjacent tracts. We showed that bidding for

these tracts is consistent with a Bayesian Nash equilibrium of a pure common value auction

in which neighbor firms are informed and collude, and non-neighbor firms are uninformed.

This paper provides formal tests of the collusion hypothesis. ? (“HPP”) study competition

in auctions of wildcat tracts, which are mostly isolated tracts. They find that expected

rents on these tracts were mostly competed away and could not reject the null hypothesis

that bidding for these tracts are the Bayesian Nash equilibrium of a pure common value

auctions with symmetric information. ? generalize the HHS test for common values and

apply it to bidding data from sales of neighbor leases in the Gulf of Mexico prior to 1983.

They were able to reject private values in favor of common values when accounting for

unobserved heterogeneity and endogenous bidder entry.

We begin in Section 2 with an overview of the offshore leasing program. In Section 3

we describe our model of competitive bidding in first-price, common value auctions, and

the that underlie the analysis. Section 4 describes the implications of collusion. Our test

procedures are described in Sections 5 and 6, together with the implementation of the tests.

Section 7 describes the data. Section 8 presents the results of the tests. Section 9 concludes.

2 Background

To motivate our model, we provide information on the federal offshore leasing program in

the Gulf of Mexico and the information structure of the auctions. More detailed descriptions

of the program can be found in ? and ?. We also discuss joint bidding ventures and how

they affect our measure of competition among neighbor firms.

5



2.1 The Offshore Leasing Program

The program is administered by the Bureau of Ocean Energy Management (BOEM), a

division of the US Department of Interior. Federal offshore lands in the Gulf of Mexico are

partitioned into blocks or tracts. The typical tract covers a rectangular area of 5,760 acres

or 9 square miles and has eight adjacent tracts. The tracts are leased to oil and gas firms.

Most leases cover a single tract, although when a hydrocarbon deposit is very likely, BOEM

sometimes splits a tract in half and covers it with two leases. BOEM holds yearly sales in

which it sells hundreds of leases to oil and gas firms. Prior to each sale, BOEM announces

that tracts within a designated area are available for leasing. Firms interested in acquiring

leases engage in seismic testing and analysis of the area to determine their willingness-to-

pay for individual leases.5 The leases are sold individually and simultaneously in first-price,

sealed bid auctions. There is an announced minimum bid or reserve price, which is typically

$15 or $25 per acre, with the same reserve price for all leases in a given sale.6 In addition,

the government can reject bids above the reserve price if it believes that there is not enough

competition for the lease.7

A lease is an option contract: the holder has the right but not the obligation to drill an

exploratory well. There is a fixed term during which time drilling must begin; otherwise the

lease expires and ownership reverts back to the government for resale. The term is 5 years

for shallow water tracts and 8-10 years for deep water tracts. Tracts are classified as shallow

if they are located in water depths less than 200 meters and deep otherwise. The royalty

rate of a lease also depends upon tract depth: it is 1/6 on shallow water leases and 1/8 on

deep water leases. The payments that the winning bidder makes to BOEM consist of its

bid, payable on the sale date, a small annual rental fee until the lease expires or production

begins, and a royalty rate on any revenues it earns from post-sale production.

The only major change to the offshore leasing program in the Gulf of Mexico occurred

in 1983 with the introduction of area-wide leasing (AWL). Prior to 1983, BOEM restricted

the supply of new tracts in a sale to several hundred shallow water tracts in selected areas.

Firms were invited to nominate eligible tracts to ensure that they were included in the final

list of tracts offered at the sale. This procedure forced firms to target their investments in

information and compete for relatively few tracts. In the context of tracts with neighbor

leases, the nomination procedure may have played an important informational role. By not

nominating an adjacent tract, neighbors revealed that they were not interested in bidding

5They are not permitted to drill wells on tracts prior to their sale.
6 In a few sales, the reserve price depends on water depth.
7 It conducts a bid adequacy decision, based in part on its own independent assessment of tract value

and the number and values of bids submitted. The rejection rate was approximately 13% during the period
1954-82 but only 4% during the period 1983-2002.
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for that tract. After 1983, BOEM did away with the selection and nomination process.

Each year, firms could survey and bid for any of the several thousand unleased tracts in the

Western and Central Gulf, including deep water tracts.

2.2 Seismic Information

Potential bidders in a sale face considerable uncertainty about the location and size of

hydrocarbon deposits. To reduce this uncertainty, they acquire seismic data prior to the

sale, which they use to learn about the properties of the subsurface layers of sediment and

rock, and to identify structural anomalies that have the potential to trap oil and gas. Most

of the seismic surveys conducted before 1990 involved vertical cross sections that the firms

would use to develop 2D models of the substrata. The costs of acquiring these data are

hundred thousands of dollars per tract, with costs often shared among several companies.

In the 1990s, advances in computing power made 3D seismic analysis possible, especially

for deep water tracts. These surveys are both more informative and more expensive. But

the only way to know whether a tract contains a hydrocarbon deposit and the size of that

deposit is to drill exploratory wells.

After acquiring the seismic data, geophysicists at the oil and gas firms spend a lot of time

interpreting the data and estimating the value of the tracts offered for sale. This process is

a closely guarded secret, and it provides firms with noisy, but qualitatively similar, private

signals about deposit locations and sizes. The observed dispersion in bidder participation

and bids suggests that the heterogeneities in bidder beliefs are substantial and important.

Firms frequently bid on different tracts, and the amounts that they bid vary widely. For

example, the second-highest bid is on average only two-thirds of the highest bid on leases

that attract at least two bids (Haile et al. 2010).

An important feature of oil and gas exploration is that hydrocarbon deposits are spatially

correlated. A field in the Gulf of Mexico typically covers several tracts, and larger fields

may cover an even wider area. As a result, prior investments in seismic data by firms who

own leases adjacent to an unleased tract may give them a cost advantage over other firms.

Neighbor firms who have also drilled wells may also be better informed. However, this

information advantage is short-lived. Firms have to submit a drill core report on each well

to BOEM and these reports are made public after the lease expires or within 24 months of

the drilling date, whichever comes first. Furthermore, production from wells is more or less

public information.

To a large extent, the uncertainty faced by bidders is common value, as opposed to

private value. Bidders value oil and gas deposits similarly, on the basis of wellhead prices,

7



and have similar drilling costs, which are primarily determined by tract depth and rig rental

rates.

2.3 Joint Ventures and Neighbor Bidders

After conducting their analysis of the seismic data and prior to the sale, firms often negotiate

joint bidding agreements with each other. These agreements specify the firms’ share of

costs (including the bid) and revenues, and are legally binding contracts. Most of these

agreements are area and sale-specific; that is, firms who bid jointly in one area of the sale

may bid competitively in other areas or in other sales. All firms were allowed to bid jointly

prior to 1975. After 1975, joint bids involving two or more of the (then) eight largest oil

and gas firms (where large is determined by world oil and gas production) were banned,

although these firms were free to participate in joint bids with other firms.

After the sale, firms sometimes sign shared work or acquired interest agreements, typi-

cally with owners of adjacent leases. These joint drilling and production agreements specify

the firms’shares in costs and revenues, and designate an operator. They need to be ap-

proved by BOEM. They are especially common on deep-water tracts. Interestingly, all

firms, including the major firms, are free to sign these agreements with each other. In other

words, even though major firms cannot bid jointly on leases, they can become co-owners of

leases, which in turn can affect bidding for adjacent leases in subsequent sales.

Given the prevalence of joint bidding, it is important to identify the set of neighbor

firms on tract t in sale σ who are potential competitors. To do this, we partition the set

into groups. If firm A is the sole owner of at least one neighbor lease, then it is assigned

to its own group. If firms A and B jointly own a lease on a neighbor tract, then they are

assigned to the same ownership group. The assumption here is that such firms will agree

not bid against each other on tract t and will act as a single firm, either submitting a

joint bid or a solo bid by one of the firms. Of course, there can be multiple joint-bidding

relationships within a single neighborhood. For example, if firms A and B jointly own a

lease of a neighbor tract and firms B and C jointly own a lease on another neighbor tract,

we specify firms A, B, and C as belonging to a single ownership group. The assumption

here is that if A and B agree not to compete and B and C agree not to compete, then A

and C also agree not to compete.8

More formally, the set of joint ownership relations in a neighborhood defines graph in

which each node (vertex) represents a neighbor firm and each edge indicates joint ownership

of at least one tract in the neighborhood. We define ownership groups corresponding to the

8We relax this assumption in a robustness exercise.
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components of this graph: owners of neighbor tracts who are not connected (i.e., isolated

nodes in the graph) are in singleton components, while owners connected to each other

through one or more joint venture relations belong to the same component. The number of

ownership groups for tract t is equal to the number of components. We will refer to these

ownership groups as “neighbor bidders”We observe changes in ownership of a given tract

over time. Neighbor firms, and therefore also ownership groups, for a given tract t in sale

σ are defined as of the date of the sale. The number of contemporaneous ownership groups

for tract t is our measure of the number of neighbor bidders, Nt.

3 Model

In this section, we present our model of competitive bidding and characterize competitive

equilibrium behavior. We then discuss the effect of the winner’s curse on participation and

bids.

3.1 Setup

Here we present a model that underlies our tests of competitive bidder behavior. A lease

t is offered in a first-price sealed bid auction with a reserve price rt. Commonly observed

characteristics of the lease and its neighborhood are denoted by Xt ∈ X, with rt ∈ Xt.

Potential bidders for the lease comprise two types of firms: neighbors and non-neighbors.

We denote the set of neighbors by Nt, letting Nt = |Nt|. The value of the lease (net

of drilling and production costs) is unknown but common to all firms and denoted by

Vt ∈ [v, v].9 A firm can obtain a private signal of the tract value by acquiring and analyzing

seismic surveys and other data for the relevant area. We assume that neighbor firms are

endowed with signals. This reflects the fact that owners of active neighbor leases will already

have undertaken the relevant data analysis for the area of the tract. Non-neighbors, on the

other hand, must choose whether to acquire a (costly) signal. We let NNt denote the

number of non-neighbors acquiring a signal. We assume that no firm without a signal will

submit a bid above the reserve price.

We refer to firms with signals as “bidders.”Bidders are the players in the auction game.

We let Kt = Nt +NNt denote the total number of bidders. We focus on auctions in which

there are at least two bidders, i.e., Kt ≥ 2. Let Sit denote the signal of bidder i. Without

loss of generality we let each signal Sit have a standard uniform marginal distribution.

9Although we assume a pure common values model due to the nature of these auctions, the model and
testable predictions are essentially unchanged if we generalize the to the symmetric affi liated values model of
? as long as the limiting case of private values is ruled out. Evidence supporting the presence of a common
value component in the pre-AWL period has been shown, e.g., by ?, ?, and ?.
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We assume that bidders are symmetric at the auction; thus, while neighbors have a

cost advantage in signal acquisition, the signals of all firms i are equally informative ex

ante. This reflects the fact that all firms ultimately have access to the same signal technol-

ogy.10 We denote the joint distribution of signals and tract value conditional on (Xt,Kt) by

F (S1t, ..SKtt, Vt|Xt,Kt). Let St = (S1t, ..., SKtt) denote the signals of all bidders for tract t

and let S−it = St/Sit denote the signals of bidder i’s competitors.

Assumption 1. For any x ∈ X and k ∈ Z+, F (St, Vt|x, k) has a continuously differentiable

density that is strictly affi liated, exchangeable in the bidder indices, and positive on [0, 1]k×
[v, v].

Affi liation is a standard assumption, formalizing the notion that higher values of the

signal Sit imply stochastically higher values of both Vt and S−it. The strict form of affi liation

assumed here requires that this positive dependence be strict, as is natural in a common

values setting. The exchangeability component of Assumption ?? implies that bidders are

ex ante symmetric. Thus, although we allow for asymmetries in signal acquisition costs, we

assume that all firms have access to the same signal technology.

We will not model the signal acquisition (“entry”) decisions of non-neighbors. Instead

we rely on two assumptions on entry outcomes. The first is that the number of bidders Kt

is uniquely determined by Xt and Nt.

Assumption 2. Conditional on (Xt, Nt), the distribution of Kt is degenerate with proba-

bility one.

This is an important assumption, made necessary by the fact that we do not observe

entry decisions of non-neighbor firms. This is a mild assumption when (Xt, Nt) are suffi cient

statistics for the information available at the entry stage.11 For example, Assumption 2 holds

when one combines the the standard auction model with a standard simultaneous-move,

complete information entry game in which non-neighbors have identical signal acquisition

costs conditional on Xt, Nt. Following ? and ?, it is easily confirmed that under mild

regularity conditions, in any Nash equilibrium of this entry game, the number of non-

neighbor entrants is unique with probability one (see ? for details). Intuitively, in this case

the number of bidders is determined by a standard free-entry condition. Thus, although the

identities of entering non-neighbors is indeterminate, the number of non-neighbor entrants

10Appendix G provides a robustness analysis, focusing on the subset of tracts with no prior drilling on
neighboring tracts, where the most likely source of any informational asymmetry is absent.
11Violations of Assumption 2 could arise if entry decisions reflect unobserved auction-level heterogeneity,

selective entry, mixed strategies, or stochastic selection among equilibria that yield different numbers of
entrants.
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is unique except in the (zero probability) event of indifference. With this assumption, we

can write

Kt = k (Xt, Nt)

for some function k.

Although some testable implications of our model are obtained without additional main-

tained assumptions, we state two additional conditions that underlie one of our testing

strategies. The first condition requires the function k to be weakly increasing in Nt, and

strictly so for some values of (Xt,Nt).

Assumption 3. k (x, n) is weakly increasing in n for all (x, n), and strictly increasing in n

for some (x, n).

Assumption ?? is a natural assumption, reflecting the fact that, all else equal, adding

a neighbor bidder increases the number of bidders that obtain a free signal. The quantifier

here reflects the fact that k need not always respond to a change in n If the marginal entrant

at (x, n) is a non-neighbor bidder, then an increase in the number of neighbor bidders from

n to n+ 1 makes the winner’s curse more severe and, as a result, may “crowd out”a non-

neighbor bidder, leaving k unchanged. Assumption ?? holds in the example described above

as long as non-neighbor entry costs do not increase with Nt. In that case, adding a neighbor

bidder will never reduce the total number of bidders; and whenever k (x, n) = n, it will be

the case that k (x, n+ 1) = n+ 1 12 With this property, we may represent F (St, Vt|Xt,Kt)

instead as F (St, Vt|Xt, Nt), which we will do henceforth.

The second assumption requires that the variation in Nt is exogenous conditional on X.

In order to make explicit what we mean by this assumption, let F
(
S1, . . . , Sk(X,N), V |X,N, `

)
denote the joint distribution of the tract valuation and ` ≤ k(X,N) randomly chosen bidder

signals, conditional on (X,N).

Assumption 4. For all x ∈ X, n ∈ Z+, and ` ≤ k(x, n), F (S1, ..., Sk(x,n), V |x, n, `) =

F (S1, . . . , Sk(x,n+1), V |x, n+ 1, `).

Assumption 4 states that, if we add a neighbor bidder but hold all else the same, then the

joint distribution of the tract value and the signals of ` randomly chosen bidders conditional

on X is unaffected. This is an important assumption, but one that may be particularly

plausible in our application. A primary reason this type of exogeneity condition could fail

is the presence of unobserved tract-level heterogeneity that affects bidders’entry decisions.

Such concerns may be mitigated when it is possible to control for the primary sources of

12 If non-neighbors do not enter with K = n, then it cannot be profitable for them to enter when K = n+1.
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tract-level heterogeneity. For example, because the number of active neighbor leases Lt

will be included in Xt, variation in the number of neighbor firms Nt conditional on Xt

reflects only variation in the number of distinct firms owning the Lt leases, not the overall

attractiveness of the neighborhood. In fact, our data set offers an exceptionally rich set of

tract- and neighborhood-level observables, and our machine learning approach is designed

to allow us to control flexibly for their impact on the joint distribution of signals and tract

value.

3.2 Equilibrium Behavior and the Winner’s Curse

By standard results (see, e.g., ?), Assumptions ?? and 2 ensure existence of a unique

symmetric Bayesian Nash equilibrium in increasing bid functions for any realization of

(Xt, Nt). Let β (·;Xt, Nt) denote this equilibrium bidding strategy, which is in fact strictly

increasing.13 Let the random variable

Bit = β (Sit;Xt, Nt) (1)

denote the equilibrium bid of bidder i in auction t. Let G
(
B1t, . . . , Bk(x,n)t;x, n

)
denote

the joint distribution of equilibrium bids conditional on Xt = x and Nt = n.

Of course, a bidder may conclude after observing its signal that the lease is not suffi -

ciently valuable to justify a bid above the reserve price. As discussed by ?, this decision is

determined by a threshold signal s∗(x, n) ∈ [0, 1], known as the “screening level”(?). The

screening level is defined implicitly by the condition

E[Vt|Sit = s∗(x, n),max
j 6=i

Sjt ≤ s∗(x, n), Xt = x,Nt = n] = rt (2)

characterizing indifference to winning the auction at the reserve price. By convention, we

set Bit = 0 when bidder i chooses not to bid. Because we have normalized signals to be

uniform on [0, 1], the probability that a given bidder submits a (strictly) positive bid in

auction t is equal to 1− s∗(xt, nt).
The threshold condition (2) incorporates bidders’recognition of the winner’s curse. A

bidder with signal Sit = s∗(xt, nt) knows in equilibrium that it it will win the auction only

when no other bidders have signals above s∗(xt, nt). The winner’s curse also appears in the

13? provide a characterization of this strategy. We exploit a characterization of the inverse bidding
strategy below.
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calculus determining the level of the nonzero bids. Let

Mit = max
j 6=i

Bjt

denote the highest bid among bidder i’s rivals at auction t. Let

GM |B (m|b, x, n) = Pr{Mit ≤ m|Bit = b,Xt = x,Nt = n},

denote the conditional distribution function of the high rival bid, with gM |B (m|b;x, n) de-

noting the associated conditional density. Following the key insight in ?,14 each equilibrium

bid Bit must satisfy the first-order condition

w(Sit;Xt, Nt) = bit +
GM |B(Bit|Bit, Xt, Nt)

gM |B(Bit|Bit, Xt, Nt)
, (3)

where we define

w (sit;x, n) = E

[
Vt|Sit = sit,max

j 6=i
Sjt = sit, Xt = x,Nt = n

]
. (4)

The term w (sit;n, x) will play an important role below. It represents the expectation of the

tract value conditional on all information available to bidder i and the hypothesis that i is

tied with another bidder for having the highest signal at the auction. The monotonicity of

equilibrium bidding strategies implies that in equilibrium a tie for the highest signal implies

a tie for winning the auction, i.e., that i is “pivotal.”As usual, optimal behavior involves

conditions defined conditional on pivotality, even though a bidder will turn out to be pivotal

with probability zero. Following ?, we refer to w (sit;xt, nt) as bidder i’s “pivotal expected

value” at auction t. An important observation for what follows is that (3) immediately

implies identification of the pivotal expected values associated with each nonzero bid.15

4 Testable Implications of Competition

Our broad strategy is to test falsifiable restrictions of the model of competitive bidding

developed above. We consider testable implications of two key aspects of the competitive

model.
14See also ?, ??, ?, ?, and ?.
15See, e.g., ?, ?,??, ?, ?, and ?.
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4.1 Affi liation of Bids

The first testable implication of the model follows from the following well-known result16.

Lemma 1. If Z1, . . . , Zk are affi liated random variables and g1, . . . , gk are weakly increasing

functions, then the random variables g1 (Z1) , . . . , gk (Zk) are affi liated.

The equilibrium bidding strategies β (·;Xt, Nt) derived above are weakly increasing in

signals; in fact, they are strictly increasing in signals above the screening level s∗ (Xt, Nt).

Thus, by Lemma 1, competitive behavior requires affi liation of bids at each auction t.

Proposition 1. Under Assumptions ??—2, for any auction t with Kt > 1, (Bit, Bjt) are

affi liated conditional on Xt, Nt for any bidders i and j.

Note that this implication of competitive bidding does not require Assumptions ?? or 4.

This prediction applies to the bids of both neighbors and non-neighbors. However, we will

focus below on neighbor bids. This reflects both the fact that we do not observe the number

of non-neighbor bidders, and our focus on neighbor bidders as the most natural candidate

firms for any collusion. Note also that Proposition 1 requires affi liation in both the discrete

(positive or not) and continuous portions of the bidding decisions. We will examine each of

these below.

4.2 Response to the Winner’s Curse

The second aspect of the competitive model we examine is bidders’equilibrium response

to the winner’s curse. In equilibrium, bidders who are acting competitively adjust their

participation and bidding strategies to account for the “bad news”(à la ?) implied upon

learning that one has outbid all competitors. Although we cannot observe such adjustments

directly, it is possible to isolate the way those adjustments respond to changes in the severity

of the winner’s curse that arise from exogenous changes in the level of competition. Building

on the insights of ? and ?, we consider two manifestations of these comparative statics

predictions.

4.2.1 Monotone Screening Levels

In the competitive model, a bidder’s willingness to submit a bid of at least the reserve

price depends on the number of competitors faced. Intuitively, the bad news implied by

discovering that no other bidders had signals above the screening level depends on how

many other bidders there are. The larger the number of bidders, the worse is the news

16See Theorem 3 of ?.
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about the tract value. Formally, given Assumptions ??—4, it is straightforward to show

that the participation threshold s∗(x, n) is increasing in n (see Lemma 1 of ?), and strictly

increasing in n for some (x, n). Thus, fixing Xt, our model of competition implies that

bidders are less likely to submit a bid in auctions with more neighbors. Letting

ρ (Xt, Nt) = Pr{Bit > 0|Xt, Nt}

this immediately implies the following testable restriction.

Proposition 2. Under Assumptions ??—4, ρ (x, n) is decreasing in n for all x, and strictly

decreasing in n for some (x, n).

4.2.2 Stochastic Dominance of Pivotal Expected Values

We also look for evidence of neighbors’equilibrium response to the winner’s curse in the

level of their positive bids. Our approach here follows from two observations. First, as noted

section 3.2, for every auction t and bidder i submitting a positive bid, the pivotal expected

value w (sit;xt, nt) is identified via the equilibrium first-order condition (??). The second

observation is closely related to the ideas in section 4.2.1. In particular, the conditioning

event {maxj 6=i Sjt = sit} reflecting the winner’s curse in (4) conveys different information
depending on the number of bidders. Specifically, while it always implies a tie at sit with

one bidder, it also implies that Kt − 2 bidders had signals below sit. The latter is always

bad news about these signals and, therefore, about the tract value Vt. But the larger is Kt,

the worse is this bad news. This was shown formally (given Assumption 4) in ?. And under

Assumptions 2 and ??, this extends immediately to imply that w (sit;x, n) is decreasing in

n, and strictly so for some x, n.

To state the testable implication formally, define the random variable

Wit =

{
w(Sit;Xt, Nt) if Sit ≥ s∗(Xt, Nt)

0 otherwise,
,

and let FW (·|Xt, Nt) denote the conditional distribution of Wit. For any x ∈ X let

w∗ (x) = max
n

w (s∗ (x, n) ;x, n) .

Then we have the following testable implication of the competitive model.

Proposition 3. For all x, under Assumptions ??—4, FW (w|x, n) is weakly increasing in n

for all w ≥ w∗ (x). For some (x, n), the monotonicity is strict.
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The need to limit attention to pivotal expected values above w∗ (x) arises from the fact

the first-order condition (??) only allows identification of pivotal expected values associated

with signals above the screening level for each auction.17 Thus, given Xt = x and Nt = n,

we can identify FW (w|x, n) only for w ≥ w (s∗ (x, n) ;x, n). The value of w (s∗ (x, n) ;x, n)

can move up or down with an increase in n: a large n reduces w (s;x, n) at any given signal

s, but the threshold signal s∗ (x, n) rises with n. This creates ambiguity about the ordering

of the distributions FW (w|x, n) with respect to n for w near w (s∗ (x, n) ;x, n). However, by

restricting attention to w ≥ w∗ (x), we are guaranteed to have FW (w|x, n+1) ≥ FW (w|x, n).

The stochastic ordering is strict when increases in N result in increases in K. But, and

unlike the models in ? or ?, adding a neighbor bidder can have two effects. As described

above, the direct effect is an increase in the number of neighbor bidders, but the indirect

effect may be a decrease in the number of non-neighbors due to reduced profitability of

entry. The net effect may be no change in K, in which case the distributions do not vary

with n. We test the stochastic ordering that reflects the net effect.

4.3 Collusive Alternatives

Because there are many ways neighbor firms might collude, we will not specify a particular

model of collusion as an alternative to the hypothesis of competitive behavior. However, it

is useful to briefly discuss collusion in broad terms and to suggest forms of collusion that

illuminate the potential for the testable implications discussed above to fail in the absence

of competition.

The main goal of any collusive agreement is to avoid competing away rents. Neighbor

firms enjoy a positive of cost advantage by already having signals of the tract value. And

they can earn rents if they agree not to bid against each other. They might also benefit from

pooling their data and assessments to obtain a more precise estimate of lease value. Joint

bidding ventures among most bidders are not illegal in federal offshore auctions. After

the auctions are held and winners determined, all firms can and, as we document later,

often do enter joint drilling and production agreements. Finally, owners of neighboring

tracts typically cooperate in producing from a common pool if one is discovered. Therefore,

neighbors have an incentive to cooperate in bidding for adjacent leases, and the opportunity

to do so.

One simple form of collusion involves neighbors coordinating to designate a single neigh-

bor to bid in the auction. In what we refer to as the “designated bidder model,”the cartel

includes all neighbors and randomly selects one of them to submit a serious bid This bidder

17See the related discussion in HHS.
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evaluates its signal and bids as if there were no other neighbor bidders. The cartel may

or may not submit additional “phantom”bids below the serious bid in order to create the

appearance of competition.18 Non-neighbors are aware of the cartel and rationally act as

if there is only one competing neighbor bidder. In this model, the severity of the winner’s

curse does not vary with the number of neighbor firms– the auction is always as if there

were a single neighbor bidder. Likewise, the number of non-neighbors entering will vary

only with Xt, not Nt.

A possible variation of the designated bidder model is one in which the neighbor firms

pool their information prior to the submission of the single serious bid.19 In this case, the

cartel acts as a single bidder that is better informed than non-neighbors when Nt > 1,

and this informational advantage increases with Nt. The informational asymmetry between

the cartel bidder and non-neighbors makes it diffi cult to predict how the non-neighbors

bid (including the decision to submit a positive bid) will vary with Nt. Not least among

the challenges is the potential for multiple equilibria. But the implied violations of our

maintained assumptions and the assumption of competitive bidding will lead to multiple

forms of misspecification in the empirical model.

We do not commit to either of these models. Both suggest that collusion could lead to

failures of the required stochastic dominance ordering of pivotal expected values inferred

from the observed bids through the first-order conditions of the competitive model. More

broadly, however, observe that the combination of Propositions 1 and 2 offers a diffi cult

hurdle for a cartel to clear. Any form of cartel that submits no phantom bids will me-

chanically produce neighbor participation probabilities that decline with n, mimicking the

pattern required by competitive entry. But in this case the requirement of affi liation in

neighbor decisions to submit nonzero bids will fail– indeed, these decisions will exhibit neg-

ative dependence. On the other hand, if colluding neighbors always submit one bid each,

the observed frequencies of nonzero neighbor bidding will be invariant to n, violating the

requirement of Proposition 2.

5 Data and Descriptive Statistics

In this section, we introduce the data and report summary statistics on bidding behavior

and on lease outcomes. The statistics provide descriptive evidence that bidding behav-

18Colluding neighbors would have an incentive to engage in phantom bidding because BOEM can reject
the high bid on a tract if it perceives a lack of competition (i.e., too few bids). Recall that the rejection rate
during the pre-AWL period was approximately 13% but only 4% during the AWL period.
19One of the bidders who participated in joint bidding agreements told us that the exchange of information

is typically limited to summaries of seismic reports. Bidders are careful not to reveal processing secrets to
each other for fear that this information will be used against them in auctions where they are rivals.
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ior changed after the introduction of the Area Wide Leasing program, and became less

competitive (see also Haile et al (2010)).

Our data cover all tracts in the Gulf of Mexico for the period 1954 to 2002, inclusive.

For each tract, we observe the tract’s water depth, acreage, location, that is, the longitude

and latitude coordinates of its boundary points, and the date that it is sold, or all dates if

the tract is sold more than once. Each time the tract is offered for sale and received bids,

we observe the royalty rate, the lease term, the identity of all bidders and the amounts they

bid, and whether the high bid is rejected. If a bid is joint, the participants and their shares

are recorded. For any ownership transfer after the original sale, we see the transfer date,

the identity of the new owners, and their shares. We know the date, number, and depth

of any wells drilled on the tract, as well as monthly production data through 2010 of oil,

condensate, natural gas and other hydrocarbons. For the set of leases that are productive

beyond 2010, we forecast future output based on an econometric model of historical decay

rates in lease production.

The tract-level data allow us to construct a large number of covariates associated with

each tract and its neighborhood. We consider covariates falling into three categories. First

are characteristics that vary at the level of the sale, including sale date and contemporaneous

real oil and gas prices (as measured by the offshore Gulf first purchase price) and real rig

rental rates.20 Second are characteristics of the tract itself, such as water depth, acreage,

dummies for different regions (Eastern or Central Gulf), and whether the tract was offered

previously (attracting no bids or being relinquished by a prior leaseholder). Finally, we have

constructed measures of many neighborhood characteristics. Among these is the number

of active neighbor leases, which allows us to isolate variation in the number of neighbor

firms conditional on the number of neighbor tracts under lease. We also construct variables

capturing the bidding history for neighbor tracts, as well as the exploration and production

history for neighbor leases. The neighborhood bidding and drilling histories include tracts

within three rings of the tract in question. The Appendix includes a complete list of the

variables that we use in estimating the model.

Tables 1 and 2 provide sample statistics for isolated leases and for those with active

neighbor leases, respectively, conditional on receiving at least one bid. To capture changes

in bidder behavior, we divide the sample into three subsets. The first subsample consists of

all leases receiving bids in the period before Area Wide Leasing, from 1954 to 1982, which

we denote pre-AWL. The AWL period is from 1983 to 2002, and we divide the AWL leases

into two subsets, AWL Shallow and AWL Deep, where the former consists of shallow water

20 In practice, we use year-of-sale dummies to capture common price and cost shocks that are likely to
influence the drilling decisions of leases sold in the same year.
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tracts and the latter consists of deep water tracts. Essentially all tracts receiving bids in

the pre-AWL period were in shallow water.

Table 1: Summary Statistics for Isolated Leases

Variable Pre-AWL AWL-Deep AWL-Shallow

No. of Leases Bid 2, 016 2, 574 951
Avg. No. of Bids 3.566 1.310 1.386
Fraction of Leases Sold 0.900 0.985 0.978
Drill Rate 0.780 0.112 0.309
Hit Rate 0.461 0.275 0.331
Avg. Win Bid (if sold) 11.140 0.860 1.881
Avg. Rev |Hit 221.277 557.258 53.642
Avg. Cost |Drilled 10.941 21.133 11.642

Table 2: Summary Statistics for Neighbor Leases

Variable Pre-AWL AWL-Deep AWL-Shallow

No. of Leases Bid 1, 619 4, 815 8, 111
Avg. No. of Bids 2.611 1.404 1.508
Fraction of Leases Sold 0.863 0.967 0.946
Drill Rate 0.820 0.156 0.388
Hit Rate 0.547 0.322 0.497
Avg. Win Bid (if sold) 13.684 0.922 1.020
Avg. Rev |Hit 146.763 354.870 40.210
Avg. Cost |Drilled 15.360 21.260 11.467

In these tables, the drill rate refers to the fraction of sold leases on which at least one well

was drilled. The hit rate refers to the fraction of drilled leases that had any production. We

convert production information into revenue estimates using wellhead prices. The reported

revenue of a productive tract is computed by converting production flows of oil and gas into

revenues using the real wellhead prices at the date of production, and discounting them to

the auction date at a 5 percent per annum rate.21 Costs in these tables are based upon

21There is an important question of how to treat firms’expectations of future oil and gas prices, since
leases can be productive for as long as 50 years. For the purposes of this paper, we are using an ex post
measure of revenues, but we have experimented with others measures, including revenues at wellhead prices
at the time of the sale date (static expectations) and revenues based on a forecasting model of wellhead
prices.
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the American Petroleum Institute annual survey of drilling costs of wildcat and production

wells.22 All dollar figures are in millions of 1982 dollars.

The differences between the pre-AWL period and the AWL period are striking. The

majority of Pre-AWL tracts are isolated, but the pattern is reversed in the AWL period.

There are very few isolated tracts in the AWL Shallow subsample. Many more tracts are

sold during the AWL period but the number of bids per lease and bid levels fell dramatically.

On leases with active neighbor tracts, the number of bids per tract fell from 2.6 to 1.5 and

average winning bid fell from $13.6 million to $1 million. There is an even greater drop in the

number of bids on isolated tracts, from 3.6 to 1.3, and a comparable fall in average winning

bids. The average number of bids and winning bids are similar in the AWL subsamples.

Drill rates are near 80 percent on both Pre-AWL samples, 38 percent in the AWL Shallow

sample, and 14 percent for AWL Deep. Hit rates are comparable for the Pre-AWL and

AWL Shallow samples, around 50 percent, but about 33 percent for AWL Deep. The latter

number probably in part reflects the much higher costs for developing deep water tracts,

so that there is production only for larger discoveries. Drilling costs on AWL deep water

tracts are almost twice as high as drilling costs on AWL Shallow or Pre-AWL tracts. But

average revenue per productive tract is much higher on AWL Deep tracts.

Haile et al (2010) provide evidence that the Pre-AWL period also differs from the AWL

period in other notable respects, and especially in comparison with AWL Deep sales. In

the Pre-AWL period, the government captured most of the value of the tract. Tract

value is measured by discounted revenues less discounted drilling costs, and the government

share equals bonus bids plus discounted royalty payments. In contrast, firm profits were a

substantial share of value on AWL Deep tracts. Moreover, a large share of the profits in

the AWL Deep period were earned on tracts with active neighbor leases where a neighbor

firm submitted a bid. The vast majority of those tracts were acquired by neighbor firms,

which therefore earned the majority of the AWL Deep profits.

In our formal analysis, we will focus on tracts with 1 ≤ Nt ≤ 5. Tables 3, 4 and 5

present summary statistics by number of neighbor bidders for each of the three subsamples

of leases which have active neighbor tracts, again conditioning on submission of at least one

bid. We report the fraction of tracts receiving at least one neighbor bid (“NB”bids), as

well as the neighbor win rate and the fraction of tracts won by neighbor firms conditional

on leases being sold. We also report the number of non-neighbor bids (“NN”bids). Finally,

for the sample of submitted bids, we report the fraction which faced at least one rival bid

22We use the API estimates for offshore Louisiana and Texas, and information on the number and depth
of wells, to compute drilling costs for each tract drilled, classifying wells as productive if the tract produced
hydrocarbons and exploratory if it did not. These costs are also discounted to the auction date at a 5 percent
per annum rate.
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submission. Within each sample, neighbor bid and win rates increase with Nt. The number

of non-neighbor bids (and the value of their bids) per tract falls slightly with Nt, more so in

the AWL Deep sample. We do not report variation in outcomes within each sample, which

is largely uncorrelated with Nt. For example, drill and hit rates are roughly constant across

Nt for each subsample.

Table 3: Summary Statistics for Pre-AWL Leases by Number of Neighbors

Variable Nt = 1 Nt = 2 Nt = 3 Nt = 4, 5

Total No. of Leases Bid 552 579 335 147
Total No. of Bids 1, 443 1, 421 878 462
Fraction of Bids with M>0 0.820 0.823 0.841 0.894
Total No. of NN Bids 1, 117 937 483 236
Fraction of Leases with NB bids 0.591 0.686 0.779 0.837
Fraction of Leases Sold 0.891 0.846 0.836 0.884
NB Win Rate on Leases Sold 0.360 0.429 0.568 0.592

The AWL program had a large impact on participation rates and outcomes. Prior to

1983, the average neighbor bid rate was approximately 60% for Nt = 1, and drill rates were

roughly 85%. After 1983, the neighbor bid rate dropped to roughly 30% for Nt = 1, and

the drill rate dropped to 38% for shallow water tracts and 15% for deep water tracts. The

number of non-neighbor bids averaged a little more than 2 per tract during the pre-AWL

period but dropped to a little more than 1 per tract in the AWL period.

Table 6 lists the nine most active firms over the full sample, and designates the seven

who acquire the most leases for each subsample. The nine most active firms acquire a large

fraction of the Pre-AWL and AWL Deep leases, 88% and 77% respectively, and a relatively

small share of AWL Shallow leases, 38%. Bidding for AWL Deep leases is dominated by

solo major firm bids, but ex post there is more joint lease ownership. For example, the

seven most active firms acquire 64 percent of the leases sold. The majority of those bids, 55

percent of the 64%, are solo major firm bids, that is they are not a joint bid with another

large firm. (The "solo" bids by major firms may be joint with smaller firms.) The remaining

9 percent of the winning bids by large firms involve two or more majors. However, there

are ownership changes after the sale date, resulting in more concentration of ownership and
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Table 4: Summary Statistics for AWL-Deep Leases by Number of Neighbors

Variable Nt = 1 Nt = 2 Nt = 3 Nt = 4, 5

Total No. of Leases Bid 2, 091 1, 573 815 326
Total No. of Bids 2, 812 2, 268 1, 178 488
Fraction of Bids with M>0 0.415 0.489 0.487 0.512
Total No. of NN Bids 2, 120 1, 416 594 250
Fraction of Leases with NB bids 0.331 0.491 0.617 0.620
Fraction of Leases Sold 0.979 0.964 0.946 0.954
NB Win Rate on Leases Sold 0.275 0.396 0.529 0.514

more joint ownership, especially for tracts that are explored. For example, 72 percent of

the AWL Deep tracts that are drilled have a major firm owner before the time of the first

well, 48 percent with a solo major firm owner, and the remaining 24 percent with two or

more major firm owners.
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Table 5: Summary Statistics for AWL-Shallow Leases by Number of Neighbors

Variable Nt = 1 Nt = 2 Nt = 3 Nt = 4, 5

Total No. of Leases Bid 1, 212 1, 893 2, 057 2, 537
Total No. of Bids 1, 693 2, 707 3, 081 4, 049
Fraction of Bids with M>0 0.465 0.487 0.533 0.582
Total No. of NN Bids 1, 423 1, 990 2, 126 2, 741
Fraction of Leases with NB bids 0.223 0.347 0.415 0.444
Fraction of Leases Sold 0.949 0.943 0.942 0.946
NB Win Rate on Leases Sold 0.174 0.276 0.322 0.343

Table 6: Leases Won by Top 9 Firms

Name Pre-AWL AWL-Deep AWL-Shallow

Shell 346∗ 1401∗ 613∗

Getty/Arco/Conoco/Cities 633∗ 604∗ 607∗

Chevron 394∗ 560∗ 415∗

BP 265∗ 710∗ 259
Texeco 257 602∗ 320∗

Exxon 307∗ 622∗ 249
Gulf/Hess 460∗ 382 332∗

Amoco 250 392∗ 383∗

Mobil 270∗ 379 300∗

Fraction Won by Top 9 0.875 0.765 0.384

∗Firm is in top 7 for the period.
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6 Implementation of the Tests

Here we discuss our formal tests of hypothesis discussed in section 3.2. Throughout we

assume that the set of tracts offered for lease constitute an i.i.d. sample of (Xt, Nt, Bt).

***revise when resolve***In principle, we may restrict the sample of auctions considered

arbitrarily on the basis of the covariates Xt. However, we must always restrict attention to

values of (Nt, Xt) for which K (Nt, Xt) ≥ 2– i.e., those implying that each neighbor faces

competition. When Nt ≥ 2, this is automatic. However, when Nt = 1, we must identify

values of Xt ensuring K (Nt, 1) ≥ 2. Appendix B describes how we do this. Our tests are

then implemented

6.1 Tract Heterogeneity: A Nonparametric Index

Controlling for tract-level heterogeneity is critical to each of our testing strategies. This

is not unique to our approach, but essential to all empirical work relying on inversion

of equilibrium first-order conditions a là ?, or on comparative statics predictions that are

known to hold only when conditioning on the informationXt commonly known to all bidders

at auction t. Our data set offers an exceptionally rich set of tract-level covariates. This

is valuable because it alleviates concerns about the potential for significant unobservable

tract heterogeneity. Of course, in finite samples one must control for covariates in a practical

way. A common approach in the literature is to assume that tract-level observables alter

valuations through a multiplicatively (or additively) separable scalar index, and that the

index itself is linear in covariates. For example, this permits “homogenization”of auctions

by residualizing bids with a first-stage regression (see ?).

Here we take a related approach, but relax the separability and linearity assumptions.

In particular, although we assume that the joint distribution of (Vt, St) is affected by Xt

only through a scalar index (conditional on Nt), we require no further functional form

assumption beyond continuity.

Assumption 5. For each n ∈ {1, .., n}, there exists a function λn : X→ R such that

F (Vt, St|Nt = n,Xt = x) = F (Vt, St|Nt = n, λn(x)), with F (Vt, St|Nt = n, λn(x)) continu-

ous in λn(x).

Note that we permit the index function λn(·) to vary freely with the number of neighbors.
Because the bidding strategies in (1) are strictly increasing, an immediate implication is

that the joint distribution of equilibrium bids conditional on Xt = x and Nt = n satisfies

G (B1t, . . . , Bnt;x, n) = G (B1t, . . . , Bnt;λn(x), n) . (5)
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Thus, if we know the index function λn(·), we need only condition on the scalar λn(Xt)

rather than the entire vector Xt when examining the properties of equilibrium bids in an n-

neighbor auction, or when constructing bidders’equilibrium first-order conditions, allowing

us to do so in a flexible way.

To estimated the index functions, we again exploit (5). In particular, we obtain an

estimate of the index function λn(·) for each n = 1, 2, and 3 by fitting a random forest to

predict the value (including zero) ofMit conditional on Xt, Nt, and Bit for each positive bid

Bit. Under Assumption 5, any functional of the joint distribution of bids (B1t, . . . , Bnt) could

be used as the target outcome (see (5)) for estimating the relevant index functions λn(·). We
focus on the maximum opposing bidMit associated with each positive bid due to the central

role that the conditional distribution of this variable plays in the equilibrium conditions used

to interpret the equilibrium bids. We provide details in Appendix A.

6.2 Affi liation Test

*****old text from testable predictions dropped here for now***Because most available

tracts receive no bids, we focus on the subset of tracts receiving at least one bid. This

requires correcting for the implied sample selection. Fix Xt = x and Nt = n. If gB (·|x, n) is

the joint density of equilibrium neighbor bids in the population (including tracts receiving

no bids), the density in the restricted sample is

g∗B (b|x, n) =
L (Bt = b, maxiBit > 0|x, n)

Pr (maxiBit > 0|x, n)

where in the numerator is the likelihood of the event {Bt = b, maxiBit > 0|x, n}. Let

B (x, n) denote the set of all neighbor bid vectors b such that g∗B (b|x, n) > 0. For any

b ∈ B (x, n), the event {Bt = b} implies the event {maxiBit > 0}. So

L
(
Bt = b, max

i
Bit > 0|x, n

)
= gB (b|x, n) .

Thus, for b ∈ B (x, n), g∗B (b|x, n) is equal to gB (b|x, n) divided by a constant that depends

only on (x, n). Affi liation is preserved when the density is divided by a constant. Thus, on

any subset of B (x, n) that forms a lattice, we have affi liation of the joint density g∗B (·|x, n).

Although B (x, n) is not itself a lattice,23 ****what is our solution?***

23 In particular, it is not true that whenever b and b′ are in B (x, n), so are b ∨ b′ and b ∧ b′. For example,
suppose (x, n) are such that k (x, n) = n = 2 (no entry by non-neighbors). Then for some b̃ > r both

b =
(
b̃, 0
)
and b′ =

(
0, b̃
)
will lie in B (x, n). However, b ∧ b′ is equal to (0, 0), which cannot be in B (x, n)

(auctions with no bids aren’t in the sample). So g∗B (b ∧ b′|x, n) = 0, guaranteeing that the affi liation
inequality g∗B (b ∧ b′|x, n) g∗B (b ∨ b′|x, n) ≥ g∗B (b|x, n) g∗B (b′|x, n) fails at these points.
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***********************************************************

We first consider the affi liation of bids required by Proposition 1.Consider the set of

tract t for which Nt > 1. At each of these tracts, partition the neighbor bids into bins

defined by thresholds b0 < b1 < b2 < · · · < bD, where b0 = 0, b1 = rt (recall that rt ∈ Xt),

and bD is the maximum equilibrium bid conditional on (Xt, Nt). Then for each tract t and

neighbor i, define the discrete random variable

Cit = d if Bit ∈ [bd, bd+1), d = 0, .., D − 1,

indicating the cell of the partition in which Bit falls. Let Ct = (C1t, .., Cnt), with ct =

(c1t, c2t, .., cnt) denoting the realization of Ct Because each Cit is a weakly increasing trans-

formation of Bit, Lemma 1 and Proposition 1 imply that (C1t, .., Cnt) are affi liated. By

definition, this means that for any two possible realizations, c′ and c′′, of Ct, we have

Pr{c′ ∧ c′′}Pr{c′ ∨ c′′} ≥ Pr{c′}Pr{c′′}, (6)

where ∧ denotes the meet (element-by-element minimum) and ∨ denotes the join (element-
by-element maximum).

We will test these “affi liation inequalities” (6) using two types of partitions. The first

focuses on the affi liation of neighbor decisions to submit a positive bid, setting D = 2. The

second incorporates affi liation in the continuous bid levels as well. In this case we will set

D = 3, where the three cells of the partition correspond to Bit = 0, Bit ∈ [rt,m], and

Bit > m, where m denotes the median bid in the relevant sample.

To test these affi liation inequalities (6) We developed an algorithm that computes the

minimal set of inequalities implied by (??) for arbitrary values of D and Nt. The algorithm

generates all possible affi liation inequalities and then drops trivial inequalities and redun-

dant inequalities due to symmetry and dependence. We identified the latter by applying

linear programming techniques to the log-transformation of the set of inequalities that result

from eliminating the trivial inequalities and ones due to symmetry.

Example 1. Suppose n = 3 and D = 2. Then Cit = 0 if bidder i submits no bid, and

Cit = 1 otherwise. By symmetry,

Pr{1, 0, 0} = Pr{0, 1, 0} = Pr{0, 0, 1} ≡ p(1)

Pr{1, 1, 0} = Pr{0, 1, 1} = Pr{1, 0, 1} ≡ p(2).

Define p(0) = Pr{0, 0, 0} and p(3) = Pr{1, 1, 1}. The affi liation inequality (6) holds trivially
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(and with equality) for any c ∈ {0, 1}3 if c′ = (0, 0, 0) or c′ = (1, 1, 1). For any distinct

c, c′ ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} or distinct c, c′ ∈ {(1, 1, 0), (0, 1, 1), (1, 0, 1)}, (6) yields

p(0)p(2) ≥ p(1)2 (7)

and

p(1)p(3) ≥ p(2)2. (8)

Finally, for any c ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and c′ ∈ {(1, 1, 0), (0, 1, 1), (1, 0, 1)}, (6)
either holds trivially or yields

p(3)p(0) ≥ p(1)p(2). (9)

However, the inequality (9) is already implied by (7) and (8).24 Therefore, the minimal set

of inequalities is given by (7) and (8).

We consider first a test of affi liation in neighbor participation, setting D = 2. In this

case, letting ` index the number of nonzero neighbor bids, the minimal set of inequalities

for any Nt ≥ 2 is given by

p(`− 1|Xt, Nt)p(`+ 1|Xt, Nt) ≥ p(`|Xt, Nt)
2 ` = 1, . . . , Nt − 1. (10)

Given symmetry, it will be convenient to ignore bidder identities and focus on the total

number of nonzero bids,

At =

Nt∑
i=1

Ait

where Ait = 1{Bit > 0}. Define

π`,n(x) ≡ Pr(Ait = `|Xt = x,Nt = n) =

(
n

`

)
p (`|x, n) .

Then, conditioning on Xt = x,Nt = n, we can rewrite (10) as

(
n

`− 1

)−1( n

`+ 1

)−1
π`−1,n(x)π`+1(x) ≥

(
n

`

)−2
π2`,n(x) ` = 1, . . . , n− 1.

In specifying the test statistic, we will use a density-weighted version of the above

24 (7) implies p(0) ≥ p(1)2/p(2) and equation (8) implies p(3) ≥ p(2)2/p(1). Multiplying these two in-
equalities yields (9).
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inequalities. Define

τ `,n(x) =

[(
n

`

)−2
π`,n(x)−

(
n

`− 1

)−1( n

`+ 1

)−1
π2`−1,n(x)π`+1(x)

]
f2X|N (x, n)

where fX,N is the joint density of (Xt, Nt). Let

Q`,n = EX [max{τ `,n(X), 0} · ω(X, `, n)]

where ω(X, `, n) is a pre-specified, positive weighting function. Our test statistic is given

by

Q =

n∑
n=2

n−1∑
`=1

Q`,n.

where 2 ≤ n ≤ n is the range of values of Nt over which we will test affi liation. Under the

hypotheses of the competitive model, Q = 0, When the affi liation inequality (10) is violated

for some (x, n), we will have Q > 0. The Q statistic is the weighted mean of the extent to

which (10) is violated, if at all.

We employ kernel-based nonparametric estimators to construct the test statistic. These

estimators use the sample analogue of each τ `,n(x), using kernel smoothing over the value

of Xt and aggregating over n. We partition Xt = (Xc
t , X

d
t ) into its continuous and discrete

components, and let φ : Rq → R denote the kernel function where q is the dimension of Xc
t .

For a given x = (xc, xd) and bandwidth h > 0, we define25

H(xt − x;h) =
1

hq
φ

(
xct − xc
h

)
· 1{xdt − xd}.

Our choice kernel φ is a bias-reducing, 12th order polynomial. Our nonparametric estimators

of the density weighted event probabilities are of the form

π̂`,n(x)f̂X,N (x, n) =
1

T

T∑
t=1

1{At = l} · 1{Nt = n} · H(xt − xc;h).

We use these estimators to compute τ̂ `,N (x), the sample analog of τ `,N (x), and

Q̂`,N =
1

T

T∑
t=1

τ̂ `,N (Xt) · 1{τ̂ `,N (Xt) ≥ −bT }ω(Xt, `,N)]

where bT −→ 0 is a nonnegative sequence converging to zero at an appropriate rate. Sum-

25We can also smooth over the discrete covariates Xd instead of using indicator functions. We focus on
estimators of this type for simplicity.

28



ming Q̂`,N over ` and N yields an estimate of the test statistic, Q̂. Under smoothness

and regularity conditions, Aradillas-Lopez (2016)***add bibtex reference*** shows that Q̂

satisfies the following key asymptotic property,

Q̂ = Q+
1

T

T∑
t=1

γT (Xt) +Op
(
T−1/2−ε

)
,

where (i) E[γT (Xt)] = 0 and (ii) γT (Xt) = 0 with probability 1 if the inequalities hold

almost strictly (see Aradillas-Lopez (2016) for details). Letting Σ2T = V ar(γT (Xt)), our

test-statistic is of the form

ŝT =

√
TQ̂

max{κT , Σ̂2T }
,

where κT is a bandwidth sequence that converges to zero slowly (at a logarithmic rate).

For a target level α, we reject affi liation if ŝT > z1−α, where z1−α is the 1 − α quantile of
the standard normal distribution. The critical value is 1.96 for 2.5% significance level and

1.645 for 5% level.

We construct an analogous test statistic for bid levels, with D = 3 as discussed above.

As in the binary case, the test statistic compares the empirical frequency of the actions for

each neighbor against the frequency predicted under the null of affi liation. However, the

number of event inequalities to be tested with three bid levels is much larger than with two

bid levels. In the participation test, there is only one event inequality when Nt = 2, and the

number of inequalities increases by one with each additional neighbor. By contrast, with

three cells in the partition, there are three inequalities for Nt = 2, nine for Nt = 3, 18 with

Nt = 4, and 30 with Nt = 5.

6.2.1 Discussion

***PH; I think I would cut this whole section****

One reason for using a nonparametric test for affi liation is that it allows for flexible

patterns of correlation among bids. This is especially important when submitting a nonzero

bid is a tail event, as is the case in our sample. ***PH; I don’t understand this claim. Why

is nonparametric better in this case?**** Most tracts in a sale do not receive any bids,

which suggests that the likelihood of a bidder drawing a signal above the screening threshold

is often quite low.

A second, more important reason for choosing a nonparametric test is to deal with

the potential selection problem of conditioning on the sample of leases that receive bids.

Parametric approaches (e.g., Li & Zhang (2010)) have to account for the probability of

29



auctions getting no bids. ***I think this is misleading. Just as we are doing, in a parametric

context one can interpret the parametric specification as apply to the condition (on receiving

a bid) distribution rather than the unconditional distribution. I would drop this paragraph

and perhaps keep from this section only the discussion of power against collusion*** This

requires knowing the set of available leases. We do not observe this set for sales during

the pre-AWL period because the locations of the tracts that were nominated but not bid

(roughly half of the set) are not reported. Similarly, for sales in the AWL period, we do

not observe the bidders’consideration sets of leases. By contrast, our test does not require

knowing the set of available leases.

***PH: I don’t think the claims in this paragraph are true. Without the assumption

on non-neighbor participation we might have multiple equilibria conditional on x,n, for

example. I’m not sure we need exogenous variation in N ; where is that required? Without

symmetry, equilibrium may not exist and may not be unique. I propose cutting all of

this.*****The affi liation test does not require any assumptions on non-neighbor entry nor

does it require symmetry between neighbors and non-neighbors. The key assumptions are (i)

neighbor bidding strategies are monotone increasing in the private signal and (ii) exogenous

variation in the number of neighbors. Our specific formulation of the affi liation test assumes

symmetry among neighbors, but this can be relaxed. In estimating the event probabilities,

we have restricted the effects of the covariates to be the same across N . This assumption

can also be relaxed.

6.3 Tests for Responses to the Winner’s Curse

***this section should include both the test of monotone screening levels and the FOSD

test; below has only the latter***

**the following bid was moved from above and dropped here for now:*** In particular,

for any (w, n, x), define

∆(w;n, x) = FW (w;n+ 1, x)− FW (w;n, x).

Then we can formulate the null hypothesis of competition implied by Proposition 3 a

H0 : ∆(w;n.x) ≥ 0 ∀n, x,w ≥ w∗(x) (11)

with alternative

H1 : ∆(w, n) < 0 ∃n, x,w ≥ w∗(x) (12)

Any violation of the null implies violation of some maintained assumption of the model,
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including the assumption of competitive bidding. Such hypotheses have been used to form

specification tests of competitive bidding models by HHS and ?.

We can also formulate a test for evidence that the stochastic dominance required by our

model is present, essentially reversing the direction of the test. In this case we specify the

null as

H0 : ∆(w;n.x) ≤ 0 ∀n, x,w ≥ w∗(x) (13)

with alternative

H1 : ∆(w, n) > 0 ∃n, x,w ≥ w∗(x). (14)

Evidence against H0 in favor of H1 will indicate satisfaction (rejection of failure) of the

requirements of Proposition 1. Note that because the least-favorably null in this case arises

when ∆(w;n.x) = 0∀n, x,w, testing in this case is equivalent to testing the null of equal dis-
tributions Fw (·|x, n) across n against the alternative of stochastic dominance.26************

The sample of auctions consists of all auctions of leases with neighbors that received at

least one bid (neighbor or non-neighbor). In each auction, we observe the set of neighbors,

which neighbors bid and the value of their bids, and which neighbors did not bid. We set

BNB
it = 0 if neighbor i does not bid in auction t. We do not observe the set of potential

non-neighbor bidders nor do we observe which non-neighbors entered and did not bid; we

only observe which non-neighbors bid and the values of their bids. Let BNN
it denote a

non-neighbor bid. Our sample consists of an i.i.d. sample {Bt, Xt, Nt}Tt=1 where

Bt = {BNB
it }̇

Nt
i=1 ∪ {B

NN
it : BNN

it > 0}.

The main objects to be estimated with these data are the probability that a bidder does not

participate, s∗(x, n), the conditional bid distributions GM |B(Mit|Bit;n, x), and the condi-

tional densities, gM |B(Mit|Bit;n, x) for n = 1, 2, and 3. In estimating the distributions and

densities, it will be convenient to use natural log bids with one added to allow for zeros.27

Let B̃it = ln(1 +Bit) and M̃it = ln(1 +Mit).

6.3.1 Bid Distributions

We estimate s∗(x, n) for each n using a kernel regression of the binary outcome 1{B̃NB
it > 0}

on λ̂n(Xt). We include only neighbor bids in this regression because we do not observe the

number of non-neighbors who entered but did not bid. However, under our symmetry

26 In HHS, the null of equal distributions was derived as the implications of a private values model. Thus,
the hypothesis we test are equivalent to those of the test for common values in HHS.
27This allows the bandwidths for the kernel estimators to scale with the value of the bid, which we measure

in dollars. The reserve price is approximately $86,000.
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assumption, our estimate of the probability of a neighbor not bidding conditional on n

and λ̂n(x) also applies to non-neighbors. We denote our estimate of the probability of not

submitting a bid as ŝ(n, λ̂n(x)).

We will consider tests of our stochastic dominance hypotheses for n = 1, 2 (comparing

auctions with 1, 2, and 3 neighbors). One practical concern is that w∗(x) may be quite

high - so high that it would mean looking at a very small part of the distributions of pivotal

expected values. But there is no reason why we have to include all observed values of X.

We can (and do) consider a subset of the support of X where the participation probabilities

are relatively high.

The first-order condition in equation (5) can be rewritten in natural log bids as

w(s, s, n, λ̂n(x)) = exp(̃b)

1 +
G
M̃ |B̃ (̃b|̃b, n, λ̂n(x))

g
M̃ |B̃ (̃b|̃b, n, λ̂n(x))

 . (15)

To obtain an estimate of the ratio G
M̃ |B̃/gM̃ |B̃, we follow the approach taken by Li, Perrigne,

and Vuong (2000, 2002) and use nonparametric estimates of the form

Ĝ
M̃,B̃

(m̃, b̃;nt, λ̂n(xt)) =
1

Tt × hB × hλ

Tn∑
t=1

`t∑
i=1

Φ

(
m̃− M̃it

hM

)
K

(
b̃− B̃it
hB

)
K

(
λ− λ̂nt
hλ

)

ĝ
M̃,B̃

(m̃, b̃;nt, λ̂n(xt)) =
1

Tt × hM × hB × hλ

Tn∑
t=1

`t∑
i=1

K

(
m̃− M̃it

hM

)
K

(
b̃− B̃it
hB

)
K

(
λ− λ̂nt
hλ

)
.

where `t is the number of bids in auction t, Tn is the number of auctions with nt neighbors

(and the sum is over the set of auctions with nt neighbors, with the total number of obser-

vations Tt = ΣTn
t=1 `t), hB and hλ are bandwidths, K is a (Gaussian) kernel, and Φ is the

standard normal distribution function with precision hM . We use Φ to smooth the indicator

function 1{M̃it < m}. The bandwidths are selected using Silverman’s Rule of Thumb. The
ratio of Ĝ

M̃,B̃
to ĝ

M̃,B̃
is a consistent estimator of G

M̃ |B̃/gM̃ |B̃.
28

Note that, because we set M̃it = 0 whenever bidder i faces no rival bids, the mass

point at 0 will not affect unduly our estimator of G
M̃ |B̃/gM̃ |B̃ near the reserve price r.

Observations at zero will receive some weight in the estimation, but their weight near r will

28See HHS (2003) for details. The argument follows from the fact that

GM̃,B̃(m̃, b̃;n, λ̂n(x)) = GM̃|B̃(m̃|̃b;n, λ̂n(x))gB̃ (̃b, n, λ̂n(x))

gM̃,B̃(m̃, b̃;n, λ̂n(x)) = gM̃|B̃(m̃|̃b;n, λ̂n(x))gB̃ (̃b, n, λ̂n(x))
where gM̃,B̃ is the joint density of bid and maximum rival bid and gB̃ is the marginal density of bids. Note
that GM̃,B̃ is NOT a distribution function.
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be small.

To obtain estimates of the distribution of pivotal expected values, we also need an

estimate of the marginal distribution of an equilibrium bid conditional on n, λ and the bid

being positive. We estimate ĜB(·|n, λ̂n(x)) for each n = 1, 2, 3 using kernel regression and

all observed positive bids.

6.3.2 Pivotal Expected Value Distributions

****discuss here the choice to drop tracts that receive no bid and the selection correction;

given our determination of which tracts were actually offered, we could have just used that

entire sample and assigned the zero bids of neighbors to w∗(x); I think the only reason not

to do that is that we would need a lot of simulation draws to get a good sample of positive

bids, and this is a bit costly inside a bootstrap loop; but maybe we should run that once

and just confirm that we get CDFs that look the same***

Given estimates of the various bid distributions, we simulate the model to obtain em-

pirical distributions of the pivotal expected value distributions. The simulation proceeds as

follows:

1. Randomly draw a value of x from its empirical distribution and compute λ̂n(x) for

n = 1, 2 and 3.

2. For each n = 1, 2 and 3, draw S bids bs from the marginal distribution of bids,

ĜB(·|n, λ̂n(x)), setting bs = 0 with probability ŝ(n, λ̂n(x)).

3. Set pivotal expected values of zero bids to zero and plug each positive bid into the

GPV formula (5) to get a simulated pseudo-(pivotal expected) value ws(n, λ̂n(x)).

4. Draw another value of x and repeat the process.

As we iterate, we collect the pseudo-(pivotal expected) value draws associated with each

n, at different draws of x. In this way, our sample for each n reflects the same mixture of

values of x. Note that, although the index differs across n at each x, we are conditioning on

the same draw of x for all values of n. This is all we need because the first-order stochastic

dominance holds across n conditional on x. The empirical distribution of pseudo-(pivotal

expected) values associated with n is a consistent estimator of the distribution function of

the pivotal expected values conditional on n (i.e., integrating over x).

In practice, we will need to limit the values of x. We are already restricting attention

to the subset of X that imply competition for Nt = 1. However, some trimming for N > 1

will be needed as well. When a rival bid is highly unlikely, then ĝM |B(b|b, n, λ̂n(x)) ≈ 0
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for some simulated bid in some simulated auction. In these cases, estimation error can

generate implausibly high estimates of the associated pseudo-(pivotal expected) values.

We trim these values of x by requiring that the probability of facing a rival bid (i.e.,

Pr{Mit > 0|n, λ̂n(x)}) exceeds some cutoff η for n = 1, 2 and 3.

Let F̂W (·;n) denote the empirical distribution of pseudo-(pivotal expected) values for

each n = 1, 2, 3. We test the null hypotheses on these distributions. Let

∆̂(w, n) = F̂W (w, n+ 1)− F̂W (w, n).

Define the operator [u]− = u× 1{u < 0}. Following CHS, we compare pairs of distributions
using the one-sided Cramer-von Mises type statistic29

CVM =

∞∫
w∗

([
∆̂(w, n)

]
−

)2
dw.

Here w∗(x) is the maximum (over n) of the pseudo- (pivotal expected) value ws(n, λ̂n(x))

associated with the threshold signal ŝ(n, λ̂n(x)), as defined above. Under the null (given

consistency of our F̂W ), this statistic converges to zero. Under the alternative, it converges

to a strictly positive number30. In addition to the pairwise tests, we will also construct

a test statistic for the full range of n based on the maximum statistic over the pairwise

statistics:

CVMmax = max
n

∞∫
w∗

([
∆̂(w, n)

]
−

)2
dw.

For inference, we use the bootstrap. As usual, this requires re-centering of the bootstrap

test statistics. Let CVMn,0 denote the statistic obtained in our full sample. Let CVMn,r

denote the statistic obtained by applying the same estimation procedure (i.e., starting from

the very beginning, fitting of the random forest, etc.) for bootstrap replication r. We then

use the empirical distribution of

CVMn,r − CVMn,0

to approximate the distribution of our test statistic under the null. Thus, letting Hn

denote the empirical distribution of CVMn,r −CVMn,0, our bootstrap p-value for the test

29 In practice we approximate the integral with a sum over simulated draws, e.g., the draws we use to
construct the distribution functions that we have been plotting. We could consider other statistics. The KS
statistic would simply replace the summation over w with the max over w, while dropping the exponent 2.
30Due to the boundary bias of kernel estimators, however, we restrict the integration to an interval bounded

away from the limits of the support of the pivotal expected values.
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is 1−Hn(CVMn,0).

For the bootstrap resampling, we follow the standard auction block bootstrap procedure:

draw an auction t from the full sample, include all bids from the selected auction in the

bootstrap sample, repeat (with replacement).31 We perform 1,000 replications.

We also test the hypotheses that the participation thresholds s∗(x, n) are increasing (or

constant) in n under the first test (or under the second test), versus the alternative that

they are constant (decreasing) under the alternative hypothesis. These tests are relatively

straightforward, involving a comparison across n of ŝ(n, λ̂n(x)), the estimated fraction of

entrants who do not submit a bid. We also use the boostrap for inference. The Appendix

contains more detail.

6.4 Discussion

Our stochastic dominance test relies on a number of maintained assumptions, such as opti-

mal behavior as described by Bayes Nash equilibrium. An important maintained assumption

is symmetry conditional on entry. It is possible that there may be asymmetries between

neighbor and non-neighbor firms, or within those subsets, especially within the set of neigh-

bor firms if they have differential experience. However, the GPV first order condition, as

described in equation (5), only applies in private value environments with symmetric or

asymmetric bidders, or in common value environments with symmetric bidders. The GPV

first order condition does not characterize equilibrium behavior in asymmetric common

value auctions.

As we discussed above, our stochastic dominance tests will not detect some forms of

collusion. For example, an all inclusive cartel with a designated bidder and no information

sharing will be indistinguishable from competitive behavior under private values, and so

the null hypothesis will not be rejected in the first test, if the model is otherwise correctly

specified. Such a cartel would also result in the null not being rejected for the second

test, however, which we would view as suspicious given our presumption that this bidding

environment entails common values.
31Unlike HPP and CHS, we will not employ a spatial boostrap because we do not permit any unobservables

in our model that could be spatially correlated. In essence, we are assuming that by using the random forest
on a large set of covariates, we control for all auction heterogeneity except for random realizations of bidder
signals.
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7 Test Results

7.1 Affi liation

We begin with the affi liation tests. We apply these tests separately for neighbor bids on

leases with neighbors and for bids of the Top 7 firms on leases without neighbors (i.e.,

isolated tracts). In each case, we apply the tests to three subsamples: Pre-AWL, AWL

Shallow, and AWL Deep. To ensure comparability of our results across subsamples, we use

the same range of N for each test. Our criterion is to identify values of N that included

at least 1% of observations in every subsample. The testing range for the neighbor bids is

N ∈ [2, 5] and, for Top 7 firm bids, it is N ∈ [4, 7]

Table 7 reports the results for affi liation of neighbor bids for the three subsamples. The

first row gives the values of the test statistic for the binary case of participation, and the

second row gives the values of the test statistic for the trichotomous case of participation

with low and high bid. The numbers in parentheses are the p-values of the statistics. The

last row gives the number of observations for the three subsamples.

Table 7: Affi liation of Neighbor Bids

Pre-AWL AWL Shallow AWL Deep

{No Bid, Bid} 0.90 (0.18) 1.96 (0.025) 4.05 (0.00)

{No Bid, Low Bid, High Bid} 1.44 (0.075) 3.63 (0.00) 4.31 (0.00)

Number of Bids 1,191 6,485 2,715

The critical values for rejection of the null are 1.645 and 2.33 for 5% and 1% significance

levels, respectively. Thus, we fail to reject affi liation of neighbor participation and bids for

the Pre-AWL subsample at the 5% level, but we reject affi liation of participation and bids

for the AWL-Deep subsample at this significance level. The results for the AWL-Shallow

are less definitive. We reject affi liation of neighbor participation at the 5% level, but not at

the 1% level. However, we do reject affi liation of bids in the trichotomous case at the 1%

level. These results suggest that neighbors bid competitively during the Pre-AWL period

but did not do so during the AWL period, and especially not on deep water tracts.

Table 8 reports the values of the test statistic and p-values for bids by the Top 7 firms
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on isolated tracts.

Table 8: Affi liation of Top 7 Firm Bids on Isolated Tracts

Pre-AWL AWL Shallow AWL Deep

{No Bid, Bid} 1.05 (0.15) 1.70 (0.045) 4.62 (0.00)

{No Bid, Low Bid, High Bid} 0.36 (0.36) 2.12 (0.017) 3.45 (0.00)

Number of Bids 1,723 924 2,574

The test results are similar to those reported for neighbor bids. We fail to reject affi liation

of Top 7 firm bids for the Pre-AWL subsample at the 1% level, but we reject the null at this

significance level for the AWL Deep subsample. For the AWL Shallow subsample, we reject

affi liation of participation by Top 7 firms at the 5% level, but we reject the null at the 1%

level in the trichotomous case. We infer from these results that top firms bid competitively

for isolated tracts during the Pre-AWL period but did not do so during the AWL period,

and especially not on deep water tracts.

The AWL Shallow subsample has relatively few isolated tracts, and many of them be-

came isolated due to neighbor leases expiring. This may explain why the test results for

isolated tracts are similar to those of neighbor tracts. However, it cannot explain the results

for the AWL Deep subsample. Most of these tracts were isolated because they are located

in areas that had not been previously explored. Despite the absence of any asymmetries

in entry costs for these leases, the top firms do not appear to have bid competitively for

them. It suggests that the lack of competition for leases with neighbors may have spilled

over onto isolated leases. This would not be too surprising, since the neighbors on deep

water tracts are mostly Top 7 firms. They won roughly 70% of the leases in the AWL

Deep subsample and, as we documented in the previous section, they often owned those

leases jointly at the time of exploratory drilling. Indeed, the lack of competition among top

firms for isolated tracts suggests that they may not have bid competitively for tracts with

neighbors, regardless of whether they are neighbors or non-neighbors.

7.2 Stochastic Dominance

We turn next to the stochastic dominance test, which we apply separately to each of the

three subsamples. The test consists of comparing the empirical distributions of pseudo

(pivotal expected) values (aggregated over x) for n = 1, 2, and 3. The distributions depend

on the trimming parameters, ζ and η. Recall that, in estimating the bid distributions for

n = 1, we want to omit auctions in which the neighbor bids and, in equilibrium, is the

only entrant. This event is not observable (to us). Instead, we estimate the probability
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of observing at least one non-neighbor bid conditional on X and drop auctions for which

this prediction is less than ζ. Since the neighbor is more likely to participate when it has

no rivals, trimming the sample in this way should affect our estimate of the probability

of bidder participation. We find that this is indeed the case. As ζ increases and more

non-competitive auctions are dropped from the sample, the probability of non-participation

increases, with the increases diminishing as ζ gets larger. The increases are essentially zero

when ζ lies between 0.3 to 0.4 so, in what follows, we set ζ = 0.3.

Similarly, in simulating the empirical distributions, we focus on auctions that the data

indicate are competitive ***need a different term for this*** by only drawing values of X

at which the predicted probability of a rival bid is above η. This situation occurs when the

probability of drawing a signal above the screening threshold is suffi ciently high. It also

occurs when neighbors collude and, in equilibrium, non-neighbors enter. As we mentioned

previously, our model tends to generate estimates of pseudo-values that are sometimes too

high when a bidder believes that it is likely to be the only bidder (i.e..gM |B ≈ 0). Thus, the

main effect of trimming the simulation sample is likely to be on our estimates of the upper

tails of the distributions of W . In what follows, we set η equal to 0.4.

Figures 3 to 5 show the estimated distribution functions for the three sub-samples.

Table 9 reports the p-values from the formal tests for the ordering of the participation

probabilities, and Tables 10 and 11 report the p-values from the tests for the ordering of

the distribution functions of the pseudo (pivotal expected) values.

Figure 3 shows the estimated distribution functions for the Pre-AWL subsample with

ζ = 0.3 and η = 0.4. The distributions depicted in Figure 3 exhibit the stochastic order-

ing implied by competitive bidding in a common values model. The probability of non-

participation increases with n, from 0.45 for n = 1 to 0.59 for n = 2, and then to 0.65 for

n = 3. Both the ordering of the distributions and the probability ordering are significantly

different from zero. We cannot reject the hypothesis that the participation threshold and

the distribution of pseudo values are increasing in n, whereas we can reject the hypothesis

that they are constant in n. In both cases, the test results are consistent with competitive

bidding under common values. As expected, the gap between F̂W (w;n+ 1) and F̂W (w;n)

is larger for n = 1 than for n = 2. It is also larger at lower values of w and goes to zero as

w approaches the upper bound of its support. These results provide strong support for the

hypothesis that auctions in the Pre-AWL subsample are common values and that firms bid

competitively in them.32

Figure 4 presents the estimated distribution functions for the AWL Deep subsample

32Hendricks, Pinkse, and Porter (2003) and CHS (2019) also present evidence of common values and
competitive behavior for this subsample.
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and ζ = 0.3 and η = 0.4. The ordering of the distributions for n = 1 and n = 3 is

opposite that predicted under competitive bidding. The probabilities of non-participation

are similar (0.73), but larger than the probability of non-participation for n = 2 (0.68). The

distribution for positive w are also similar for n = 2 and n = 3, and below that for n = 1.

These patterns are not consistent with competitive bidding under common or private values.

Figure 5 shows the estimated distribution functions for the AWL Shallow subsample

and ζ = 0.3 and η = 0.4. The distributions for n = 2 and n = 3 are ordered as implied by

competitive bidding with common values. The probabilities of non-participation increase

with n (0.78 and 0.83), as predicted. The issue is that the distribution function for n = 1

lies between the other two, with an intermediate probability of non-participation (0.82).

The patterns of the distributions for positive w are also not consistent with competitive

bidding, under common or private values.

The test results are not consistent with competitive bidding under common values in

both the AWL samples. The discrepancy is starker in the AWL Deep sample, where we

would reject the null of an increasing participation threshold at any conventional significance

level, for example.

8 Additional Evidence

this is just an idea, but a section here showing relevant suggestive descriptive evidence that

supports (or not) collusion as the reason for rejecting competition would strengthen the

paper. Some possibilities:

1. reproduce/re-do what was in the JIE paper re: participation and profits

2. info pooling: neighbor vs. non-neighbor profits, neighbor profits increasing in N [a

problem is that both would be explained by other things, including spatially correlated

UH]

3. correlation with ex post values: (conditional on X)

(a) high neighbor bid vs. losing neighbor bids (phantoms)

(b) high neighbor vs. high non-neighbor (info pooling)

9 Conclusion

In this paper we have developed two tests of competitive bidding in common value, first-

price auctions using data on bids. We have applied our approach to offshore oil and gas
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auctions of tracts where adjacent tracts were already under lease, and for isolated tracts.

Specifically, we test whether the owners of the adjacent tracts bid competitively in the

former case, and whether the most active firms bid competitively in the latter case. Our

two tests lead to similar conclusions. The behavior of neighbor firms is consistent with

competitive bidding in the Pre-AWL period on tracts with active neighbor leases, and for

major firms bidding on isolated tracts in the same period. The bidding of neighbor firms for

deep water tracts in the AWL period is not consistent with competition, nor is the bidding

of major firms for isolated tracts in that period. The evidence is mixed for bidding on

shallow water tracts in the AWL period.
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Appendices

A Estimating the Index Function

For each value of n, we estimate the index function λn(·) by estimating a random forest to

predict the value the maximum rival bid Mit, which may be zero, associated with each pos-

itive bid Bit. We treat this as a prediction (regression) problem, with features (covariates)

Xt and outcome ln(Mit + 1). The random forest is estimated on the trimmed sample (see

Appendix ***), restricted tracts receiving positive bids. We denote the resulting predicted

value of the index at Xt = x as λ̂n(x).

The estimation procedure at each value of n is as follows, using parameter values L = 50

and Q = 50:

1. For ` = 1, . . . , L

(a) Randomly split the sample into 2 equal sized folds.

(b) Estimate 2 random forests which have Q trees each.33 Each random forest is

estimated on 1 of the 2 folds.

(c) Combine the trees from the 2 random forests from (b) into one random forest.

This random forest has Q×K trees. Call this random forest RF`.

2. Combine the L random forests {RF1, . . . , RFL} into a random forest denoted λ.

This approach has the feature that it will not overfit compared to the standard imple-

mentation of the random forest when training and predicting on the same data. When

fitting a random forest, each data point in the training sample will be included in approx-

imately 2/3 of the trees due to the bootstrapping. This means that when obtaining the

predicted value for a given x, two thirds of the trees in the forest will be using its associated

target outcome to generate a prediction. The index algorithm reduces the number of times

a data point is used to train a tree. Under the parameters selected, each data point is used

to train approximately 1/3 of the trees.[**need more clarity here. What supports the claim

of not overfitting with this approach and overfitting with the standard approach? How do

we get to the 2/3 and 1/3? What is meant by " reduces the number of times a data point

is used to train a tree" (compared to what? and why is this desirable?)***]

The full set of features Xt used in the training of the random forest is as follows:

****insert the list; don’t use abbreviations***

33See Appendix H for additional detail.
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B Estimation Sample for Winner’s Curse Tests

In constructing the sample used to estimate the auction model (for our tests for responses

to the winner’s curse), we must address two issues. One is that for the pre-AWL period

we do not observe the set of tracts that is up for bid. We require an estimates of these

“offer sets”in order to make valid inferences about the frequency with which bidders obtain

signals below the screening value for the auction. Our sample for the pre-AWL period is

then limited to the tracts in the estimated offer sets.

The second issue is that for tracts t for which Nt = 1, we do not directly observe

whether K (Xt, Nt) ≥ 2, as required for bids to be characterized by the conditions we

derived in section 3. Thus, we provide a conservative approach for identifying the set

X = {x ∈ X : K (x, 1) ≥ 2}. In particular, we estimate a strict subset of X and limit our

entire estimation sample (i.e., that use for all values of Nt) to tracts for which Xt falls in

this subset.34

B.1 Offer Sets

For a given sale, define a tract as “available” if it is not under lease at the time of the sale.

Define an available tract as “offered” if it is included among those up for bid in the sale.

For each sale in the AWL period, the set of available tracts and the set of offered tracts are

the same. However, this is not true of sales in the Pre-AWL period. Prior to a sale, MMS

restricted leasing to specific areas and invited firms to nominate tracts in those areas. It

then selected the set of tracts eligible for bidding in the sale, which we will call the offer

set. We observe the total number of tracts in the offered set and the location of tracts that

received bids, but not the location of tracts that did not receive bids, which is often half of

the offered set.

To obtain a sample of Pre-AWL sales for which we have good estimates of the offer

set, we first restrict the sample to Pre-AWL sales in which there is a significant number of

available tracts with adjacent tracts under lease. There are 17 such sales.35 If an Area Code

in a sale had at least one tract that received a bid, we assume that all tracts not under

lease (including isolated tracts) in that Area Code could be nominated by the firms. Define

the set of tracts that meet this criterion as the nomination set. If no tract in an Area Code

received a bid for a given sale, we exclude all tracts in that Area Code from the nomination

34Selecting the sample based on the observables Xt does not alter any of the theory or validity of our
tests. Of course, the conclusions we reach apply only to the sample analyzed.
35Their sale umbers (with the year in parentheses) are 16 (1967), 33 (1974), 36 (1974), 38 (1975), 38A

(1975), 41 (1976), 44 (1976), 47 (1977), 45 (1978), 51 (1978), 58 (1979), 58A (1979), A62 (1980), 62 (1980),
A66 (1981), 66 (1981), 67 (1982).
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set.

Next we estimate a random forest that predicts the event that a given tract in the

nomination set receives a bid. We then take the τ tracts with the highest probabilities,

where τ is the known number of tracts offered in the sale. These τ tracts are treated as

those available in the sale.

The main***why “main”and not the actual list?*** covariates (features) used fore this

random forest are as follows: ***we should spell out full versions of the abbreviations***

year, oil price, gas price, acreage, eastern gulf dummy, central gulf dummy, water depth, drainage dummy, reoffer dummy,

max neighbor tract revenue within 1, 2 or 3 rings, max neighbor tract bid within 1, 2 or 3 rings,

neighbor tract drill dummy, mean number of bids on neighbor tracts, i_produced9, drilled_ever1, drilled_ever_by2, nactive1,

NBactive_fract_by2, number of neighbor bid groups, num_bid_on_nbr, num_nbr_bid_firms, number of neighbor tracts within 1 ring

The first three variables are characteristics of the sale, the next six are characteristics of

the tract, and the remaining seventeen variables are characteristics of the tract’s broad

neighborhood, defined by up to three rings of tracts around the tract.

B.2 Trimming to Drop Single-Bidder Auctions

Under Assumption 2, a neighbor knows the number of other bidders it faces in the auction.

Our goal is to drop one-neighbor tracts for which this number is zero, i.e., those for which

K (Xt, 1) = 1. We do not observe K (Xt, 1) directly for any tract, because at any given

auction some bidders may receive signals below the relevant screening level. However, if

K (Xt, 1) = 1, an implication is that

Pr (Mit > 0|Xt, Nt = 1, Bit = b) = 0

for all values of b of the neighbor firm’s bid.

To exploit this observation, we estimate a random forest that predicts the probability

that Mit > 0 on the subsample of tracts for which Nt = 1 and the neighbor firm does bid.

Using the predicted probabilities and a parameter ζ ∈ (0, 1), we then define the set

X (ζ) = {x ∈ X|Pr{Mit > 0|Xt = x,Nt = 1, Bit > 0} > ζ}.

Here, larger values of the parameter ζ imply a more conservative restriction of the sam-

ple, providing greater certainty that tracts for which K (Xt, 1) = 1 are excluded. We set

ζ =******* and then restrict attention to the “trimmed sample”in which, for all values of
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Nt, we include only tracts for which Xt ∈ X (ζ).

C Estimation

****Revise this to reflect estimation of 2 of the 3, and then calculation of the third******

In this section, we provide the details on how we estimate the screening value functions.

1. Using the trimmed sample (see Appendix B), we estimate the probability that a tract

receives a bid using a kernel regression (with a Gaussian kernel)

1(tract t received a bid) = πN (λ̂N (Xt)) + ε,

separately for each Nt = 1, 2, 3. We use the estimate π̂N (·).to control for sample
selection when recovering the pivotal expected value distributions.

2. Using the trimmed sample, we estimate the screening value function s∗(X,N) using

a kernel regression (with a Gaussian kernel) of the form

1(BNB
i,t = 0) = qN (λ̂N (X)) + ε

separately for Nt = 1, 2, 3. We focus only on neighbors because we do not observe

when non-neighbors enter and do not bid. Since signals are distributed uniform on the

unit interval, q̂N (λ̂N (X)) is an estimate of s∗(X,N). Given our symmetry assumption,

this function also applies to non-neighbors who enter.

3. The probability that a neighbor firm’s signal is below the screening value conditional

on a tract receiving a bid is estimated on the trimmed sample using a kernel regression

(with a Gaussian kernel)

1(BNB
i,t = 0) = pN (λ̂N (X)) + ε

separately for each Nt = 1, 2, 3.. We use the estimate p̂N (·) to generate the mass point
of the distribution function of pivotal expected values when we simulate the pivotal

expected value distributions.

4. In each of the above regressions, we use the rule-of-thumb for conditional density

estimation to compute the bandwidths.36

36We could use a cross-validation procedure to pick the bandwidth but this is computationally intensive
(especially because we have to do multiple starts). If we use this approach in the bootstrap, we will have to
use the same bandwidth across all bootstrap iterations.
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These screening value functions are related through the law of total probability:

1− qN (λ̂N (X)) = Pr{SNBi,t ≥ s∗(X,N)}

= Pr{SNBi,t ≥ s∗(X,N)| max
j=1,..,Kt

{Sj,t ≥ s∗(X,N)}Pr{ max
j=1,..,Kt

{Sj,t ≥ s∗(X,N)}

= (1− pN (λ̂N (X))πN (λ̂N (Xt)

However, we estimate the three functions separately for effi ciency reasons.

D Simulation

We begin by constructing an empirical distribution for X. We first concatenate the X’s

across Nt = 1, 2, 3, and then trim this set by excluding values of X with index values λ̂N (X)

below the 15th percentile and above the 85th percentiles of the distribution of λN for all

Nt = 1, 2, 3. The purpose of the trimming is to exclude values of X that general index values

in the tails of the distributions of λN . If we are close to boundaries of these distributions

in the training data, the kernel estimates of the distribution of pivotal expected values are

noisy.

1. The simulation procedure is as follows:

2. Draw x (with replacement) from the empirical distribution of Xt in the trimmed sam-

ple

3. Loop over Nt = 1, 2, 3 and do the following:

(a) Draw D bids from ĜB(·|λ̂N (x), N). We chose D = 500.

(b) Compute the pivotal expected value w associated with each of the bids using

GPV (with the LPV trick).

(c) Let W(x,N) denote the set of pivotal expected values given X = x and N and

set w∗(x,N) = min{W (x,N)}.37

4. Compute w∗(x) = maxN{w∗(x,N)} × 1.05.

5. For each N , replace each w < w∗(x) in W(x,N) with w∗(x).

6. Use the modified set of pivotal expected values to estimate the distribution of pivotal

expected values for each N with a Gaussian kernel. Denote this distribution by

F̂ ∗∗W (·|x,N, s > s∗(x,N)).

37 If we draw enough bids, then w∗(X,N) corresponds to the pivotal expected value of the reserve price.
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(a) Define w(x,N) = E[V |Sit = 1,maxj 6=i Sjt = 1, x,N ] and w(x) = minN{w(x,N)}.
Note that this latter value does not depend on N .

7. For each w ∈ [w∗(x), w(x)], estimate F̂ ∗W (·|x,N), the marginal distribution of the

pivotal expected values in the selected sample, using the formula

F̂ ∗W (w|x,N) = p̂N (λ̂N (x)) + 1− p̂N (λ̂N (x))F̂ ∗∗W (w|x,N, s > s∗(x,N)).

8. Let F̂W (·|x,N) denote the estimated marginal distribution of the pivotal expected

values in the population. Then we correct for sample selection in F̂ ∗W (·|x,N) using the

formula

F̂ ∗W (w|x,N) =
F̂W (w|x,N)− (1− π̂N (λ̂N (x)))

π̂N (λ̂N (x))
. (D.1)

We set F̂ ∗W (w|x,N) equal to 0 for w < w∗(x) and equal to 1 for w > w(x).

9. Do the above steps S times.

Given estimates of F̂W (·|X,N), we compute F̂W (·|N) using the formula:

F̂W (w|N) =
1

S

S∑
s=1

F̂W (w|xs, N),

where s indexes the simulation draw. When evaluating a CDF at a value outside of the

grid points, we use linear interpolation on a dollar scale (the units of the pivotal expected

values).

E Stochastic Dominance Tests

We conduct two tests: the specification test (the null is that the data was generated via a

Bayes-Nash equilibrium) and the equality test (the null of private values against the alter-

native of common values). Let N2 > N1 be integers representing the number of neighbors.

1. For each neighbor pair, compute the test statistic

CVMN1,N2 =

∫ w

w

([
F̂W (w|N2)− F̂W (w|N1)

]
−

)2
dw,

where [u]− = min{u, 0} for the specification test and

CVMN1,N2 =

∫ w

w

([
F̂ (w|N2)− F̂ (w|N1)

]
+

)2
dw,
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where [u]+ = max{u, 0} for the equality test. The bounds of integration are the
largest support interval of the recovered pivotal expected value distributions. Inte-

gration is done using the Riemann sum midpoint rule with 1 million subdivisions.

2. Let CVMN1,N2,0 be the test statistic computed from the data (“point estimate”) and

CVMN1,N2,r denote the test statistic computed under the bootstrap sample r.

(a) Testing a pair of neighbor categories.

i. Use the empirical distribution of CVMN1,N2,r−CVMN1,N2,0 to approximate

the distribution of the test statistic under the null.

The P-value is

Pr(CVMN1,N2,r−CVMN1,N2,0 ≥ CVMN1,N2,0) = Pr(CVMN1,N2,r ≥ 2×CVMN1,N2,0).

Notice that we use a greater than or equal to sign. The “equal to”is included

because if all the test statistics are zero and the "equal to" is dropped, the

P-value will be zero, which does not make sense in this context.

(b) Testing all pairs (the three pairs possible when testing pairs for Nt = 1, 2, 3) for

a sample period.

i. Since we are testing multiple hypotheses, say H1 through HK , we use the

Bonferroni correction. A desired overall type 1 error rate of at most α can be

guaranteed by testing each null hypothesis at level α/K. In our case, where

we test using pivotal expected value distributions for Nt = 1, 2, 3, K = 3, as

we test equivalence or ordering of the distributions for each pair of N’s.

ii. This approach does not account for the Bonferroni correction. Let

CVMr = max
across pairs N1,N2

{CVMN1,N2,r}.

Then the P-value is

Pr(CVMr − CVM0 ≥ CVM0) = Pr(CVMr ≥ 2× CVM0).
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F Monotone Screening Tests

1. In the simulation described above, compute and store q̂N (λ̂N (xs)) for each s = 1, .., S.

Given these estimates, we compute

q̂N =
1

S

S∑
s=1

q̂N (λ̂N (xs)).

2. Compute q̂N1,r and q̂N2,r for the point estimate and each replication (this integrates

out the x’s). Let

µ̂N1,N2,0 = q̂N2,0 − q̂N1,0

be the test statistic computed from the data point estimate and let µ̂N1,N2,r denote

the test statistic computed from bootstrap sample r.

(a) Testing the null of equality of the mass point against the alternative that the

screening level is decreasing in the number of neighbors:

H0 : µ̂N1,N2,,r ≥ 0;

H1 : µ̂N1,N2,r < 0.

i. The pairwise test P-value is

Pr(µ̂N1,N2,,r − µ̂N1,N2,,0 ≤ µ̂N1,N2,,0) = Pr(µ̂N1,N2,,r ≤ 2× µ̂N1,N2,,0).

ii. The pooled test involves defining

µ̂r = min
across pairs N1,N2

{µ̂N1,N2,r}

and calculating the P-value as

Pr(µ̂r − µ̂0 ≤ µ̂0) = Pr(µ̂r ≤ 2× µ̂0).

(b) Testing the null of equality of the mass point against the alternative that the

screening level is increasing in the number of neighbors:

H0 : µ̂N1,N2,r ≤ 0;

H1 : µ̂N1,N2,r > 0.
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i. The pairwise test P-value is

Pr(µ̂N1,N2,,r − µ̂N1,N2,,0 ≥ µ̂N1,N2,,0) = Pr(µ̂N1,N2,,r ≥ 2× µ̂N1,N2,,0)

ii. The pooled test involves defining

µ̂r = max
across pairs N1,N2

{µ̂N1,N2,r}

and calculating the P-value as

Pr(µ̂r − µ̂0 ≥ µ̂0) = Pr(µ̂r ≥ 2× µ̂0).

F.1 Bootstrap Implementation (to be done)

The procedure is described for a single sample period (e.g. “Pre-AWL”) where each neighbor

category N has TN auctions.

Do the following steps 1, 000 times:

1. Bootstrap sampling, index estimation, and nonparametric estimation.

(a) For each N , construct a bootstrap sample by randomly drawing TN auctions

(leases) from the trimmed sample with replacement.

(b) For each N , fit a random forest to obtain λ̂N (X).

(c) For each N , estimate a kernel regression of 1(BNB
t = 0) on λ̂N (X). Denote this

estimate kernel regression that predicts the probability of non-participation of

neighbors p̂N (·). The bandwidth is chosen via the rule of thumb on the bootstrap
sample.

(d) For each N , nonparametrically estimate GB(·|λ̂N (X), N), GM |B(·|B, λ̂N (X), N),

and gM |B(·|B, λ̂N (X), N). The bandwidths hM , hB, and hλ are chosen via the

rule of thumb on the bootstrap sample.

G Asymmetry

Our model assumed that bidders have access to the same signal technology. This permits

neighbors and non-neighbors to have different costs of signal acquisition– e.g., extending the

seismic analysis performed on one tract to an adjacent tract may be less costsly than analysis

in a new neighborhood. However, we rule out asymmetries in the quality of information

obtained when performing the analysis. Although this is natural with respect to seismic
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information, posible concern with this symmetry assumption arises from the fact that some

of the leases are adjacent to tracts that have have already been drilled. Although drilling

outcomes are publicly observable and accounted for in our covariates, a neighbor that has

drilled a well itself might have better information than other bidders.38 As a robustness

check, here we we will repeat our analysis restricting the sample to undrilled neighborhoods,

where such concerns do not arise.

****do this; could reference similar robustness check in CHS****.

38Drill cores are a possible source of such information. Firms submit a drill core report to BOEM but
drill cores themselves are not submitted. The drill core information is especially important in evaluating
dry holes. However, firms who want to examine cores can sign an agreement to do so with the lease owner.
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H Random Forest Estimation Algorithm

***do we need this? isn’t this standard?****

The random forest algorithm is as follows (see, for example, Efron and Hastie (2016)).

The training data are given by d = (X,y), where X is an ρ × p matrix of covaraties

(features) and y is a ρ× 1 vector of outcomes (targets). Let Q denote the desired number

of trees in the forest.

1. For q = 1, . . . , Q:

(a) Create a bootstrap version of the training data d∗q .

(b) Grow a maximal-depth tree using d∗q , sampling φ of the p features at random

prior to making each split. For a classification tree, we use φ = b√pc; for a

regression tree, we use φ = bp/3c. Growing a tree involves recursively splitting

variables at a certain point to maximize the reduction in either the mean squared

error (if it is a regression tree) or node impurity (if it is a classification tree).

The algorithm is “greedy,” splitting the variable which will improve the fit the

best. The stopping rules stipulate stopping either (i) if splitting a node results

in one of the two resulting nodes having too few data points (1 for classification

or 5 for regression) and (ii) a branch from the tree stump has hit a predefined

number– we use 32– of levels

(c) let ŷq(x) denote the resulting prediction at the point x

2. The random forest prediction at any point x is the average

ŷrf (x) =
1

Q

Q∑
q=1

ŷq(x)).

***I eliminated the references to the bootstrap frequency vector w∗b , which seem to

play no role; also eliminated duplicative notation;****
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Test Tables

Table 7: Non-participation Test

Sample Period Pair Point Est P-value 5% 50% 95%

Pre-AWL_1_2 0.134 0 0.090 0.134 0.180
Pre-AWL_1_3 0.196 0 0.146 0.192 0.237
Pre-AWL_2_3 0.062 0.002 0.019 0.057 0.096
AWL-deep_1_2 −0.054 0.995 −0.090 −0.049 −0.011
AWL-deep_1_3 −0.006 0.637 −0.054 −0.002 0.052
AWL-deep_2_3 0.048 0.067 −0.013 0.048 0.102
AWL-shallow_1_2 −0.036 0.941 −0.075 −0.039 −0.007
AWL-shallow_1_3 0.013 0.207 −0.025 0.010 0.041
AWL-shallow_2_3 0.049 0.004 0.020 0.049 0.079
Pre-AWL 0.196 0 0.146 0.192 0.237
AWL-deep 0.048 0.067 −0.009 0.049 0.102
AWL-shallow 0.049 0.004 0.021 0.049 0.079

Tests the null of equality against the alternative of non-participation
increasing in the number of neighbors.

Table 8: Specification Test

Sample Period Pair Point Est P-value 5% 50% 95%

Pre-AWL_1_2 0 1 0 0 0
Pre-AWL_1_3 0 1 0 0 0
Pre-AWL_2_3 0 1 0 0 0
AWL-deep_1_2 73,371 0.074 37,879 87,078 156,228
AWL-deep_1_3 32,788 0.197 7,806 37,912 102,088
AWL-deep_2_3 0 1 0 0 1,398
AWL-shallow_1_2 1,399 0.859 669 10,350 36,553
AWL-shallow_1_3 0 1 0 0 160
AWL-shallow_2_3 0 1 0 0 0
Pre-AWL 0 1 0 0 0
AWL-deep 73,371 0.075 41,054 87,978 156,266
AWL-shallow 1,399 0.859 669 10,350 36,553

Pre-AWL integration bounds: [1,578,318; 194,755,842].
AWL-deep integration bounds: [1,042,123; 21,515,052].
AWL-shallow integration bounds: [1,047,976; 22,302,226].
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Table 9: Equality vs Positive Inequality Test

Sample Period Pair Point Est P-value 5% 50% 95%

Pre-AWL_1_2 785,528 0.245 291,658 1,063,045 2,520,324
Pre-AWL_1_3 2,261,651 0.045 1,089,579 2,301,571 4,400,170
Pre-AWL_2_3 386,017 0.012 48,264 261,373 650,180
AWL-deep_1_2 0 1 0 0 0
AWL-deep_1_3 0 1 0 0 1,572
AWL-deep_2_3 8,152 0.395 46 11,983 53,679
AWL-shallow_1_2 0 1 0 0 3
AWL-shallow_1_3 18,987 0.005 106 6,380 23,994
AWL-shallow_2_3 29,034 0.070 12,770 32,416 61,895
Pre-AWL 2,261,651 0.045 1,089,579 2,301,571 4,400,170
AWL-deep 8,152 0.395 46 11,983 53,679
AWL-shallow 29,034 0.070 12,875 32,462 61,895

Pre-AWL integration bounds: [1,578,318; 194,755,842].
AWL-deep integration bounds: [1,042,123; 21,515,052].
AWL-shallow integration bounds: [1,047,976; 22,302,226].
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Figure 1: Sales Revenue and Royalty Payments From Gulf of Mexico in Two Year Increments
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Figure 2: Fraction of Tracts with Neighbors
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Figure 3: Estimates of the Distribution of Pivotal Expected Values for Pre-AWL
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Figure 4: Estimates of the Distribution of Pivotal Expected Values for AWL-Deep
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Figure 5: Estimates of the Distribution of Pivotal Expected Values for AWL-Shallow
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